

				System of Co-ordinates
		Basic	c Level	
1.	From which of the f	ollowing the distance of the poi	nt (1,2,3) is $\sqrt{10}$	
	(a) Origin	(b) <i>x</i> -axis	(c) y-axis	(d) z-axis
2.	If $A(1, 2, 3); B(-1, -1, -1)$	be the points, then the distanc	e AB is	[MP PET 2001]
	(a) $\sqrt{5}$	(b) $\sqrt{21}$	(c) $\sqrt{29}$	(d) None of these
3.	Perpendicular distar	nce of the point (3,4,5) from the	e y-axis, is	[MP PET 1994]
	(a) $\sqrt{34}$	(b) $\sqrt{41}$	(c) 4	(d) 5
4.	Distance between th	ne points (1,3,2) and (2,1,3) is		[MP PET 1988]
	(a) 12	(b) $\sqrt{12}$	(c) $\sqrt{6}$	(d) 6
5۰	The shortest distanc	e of the point (<i>a,b,c</i>) from the <i>b</i>	c-axis is	[MP PET 1999; DCE 1999]
	(a) $\sqrt{(a^2+b^2)}$	(b) $\sqrt{(b^2 + c^2)}$	(c) $\sqrt{(c^2 + a^2)}$	(d) $\sqrt{(a^2+b^2+c^2)}$
6.	Points (1,1,1), (-2,4,	1),(–1,5,5) and (2,2,5) are the ve	ertices of	
	(a) Rectangle	(b) Square	(c) Parallelogram	(d) Trapezium
7.	The triangle formed	by the points (0,7,10), (-1,6,6)	(-4,9,6) is	[Rajasthan PET 2001]
	(a) Equilateral	(b) Isosceles	(c) Right angled	(d) Right angled isosceles
8.	The points $A(5,-1,1)$;	; <i>B</i> (7,-4,7); <i>C</i> (1,-6,10) and <i>D</i> (-1,-	-3,4) are vertices of a	[Rajasthan PET 2000]
	(a) Square	(b) Rhombus	(c) Rectangle	(d) None of these
9.	The coordinates of a	a point which is equidistant from	n the points (0,0,0), (<i>a</i> ,0,0)	, (0, <i>b</i> ,0) and (0,0, <i>c</i>) are given by
			[MP PET 1993; Rajasthan PET 2003]
	(a) $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$	(b) $\left(-\frac{a}{2},-\frac{b}{2},\frac{c}{2}\right)$	(c) $\left(\frac{a}{2},-\frac{b}{2},-\frac{c}{2}\right)$	(d) $\left(-\frac{a}{2},\frac{b}{2},-\frac{c}{2}\right)$
10.	If $A(1, 2, -1)$ and $B(-1)$	(0,1) are given, then the coordi	nates of <i>P</i> which divides <i>AB</i>	externally in the ratio 1:2, are[
	(a) $\frac{1}{3}(1,4,-1)$	(b) (3,4,-3)	(c) $\frac{1}{3}(3,4,-3)$	(d) None of these
11.	The coordinates of t are given by	he point which divides the join	of the points $(2, -1, 3)$ and (4,3,1) in the ratio $3:4$ internally
				[MP PET 1997]
	(a) $\frac{2}{7}, \frac{20}{7}, \frac{10}{7}$	(b) $\frac{15}{7}, \frac{20}{7}, \frac{3}{7}$	(c) $\frac{10}{7}, \frac{15}{7}, \frac{2}{7}$	(d) $\frac{20}{7}, \frac{5}{7}, \frac{15}{7}$
12.	Points (-2, 4, 7), (3,	-6, -8) and (1, -2, -2) are		[AI CBSE 1982]

CLICK HERE

(»

Regional www.studentbro.in

(a) Collin (c) Verti (c) Verti (c) Verti (a) $(1, -1)$ (c) $(-2, A)$ (a) -10 (a) -10 (b) The area (a) 150 s (c) $9x^2$ (c) $9x^2$ (linear	(b) Vertices of an equila	ateral triangle
(c) Verti 13. Which of (a) $(1, -1)$ (c) $(-2, 4)$ 14. If the point (a) -10 15. The area (a) 150 s 16. Volume of where K (a) $\frac{1}{2}$ 17. A point r point is (a) $9x^2$ - (c) $9x^2$ - 18. If the su from the (a) 6 19. All the point (a) $x = 0$ 20. The equation (a) Cube 21. The orthout (a) $(1, 1, 1, 22)$ 15. If $a+b+1$ (a) $(\lambda, \lambda, 23)$ (-1,6,6),(-	ticae of an isoscolos trianglo		acer ar critangre
13. Which of (a) $(1, -1)$ (c) $(-2, -4)$ 14. If the point (a) -10 15. The area (a) 150 s 16. Volume of where K (a) $\frac{1}{2}$ 17. A point r point is (a) $9x^2$ (c) $9x^2$ 18. If the su from the (a) 6 19. All the point (a) $x = 0$ 20. The equation (a) Cube 21. The orthory (a) $(1, 1, 1, 1)$ 22. If $a+b+c$ (a) $(\lambda, \lambda, 2)$ 23. $(-1,6,6), (-1)$	tices of all isosceles trialigle	(d) None of these	
(a) $(1, -1)$ (c) $(-2, -4)$ (a) -10 14. If the point (a) -10 15. The area (a) 150 s 16. Volume of where <i>K</i> (a) $\frac{1}{2}$ 17. A point r point is (a) $9x^2$ - (c) $9x^2$ - (c) $9x^2$ - (c) $9x^2$ - 18. If the su from the (a) 6 19. All the point (a) <i>x</i> = 0 20. The equal (a) Cube 21. The orthous (a) $(1, 1, 1, 1)$ 17. A point r (b) $(2, 3)$ (c)	of the following set of points are non-collinea	ar	[MP PET 1990
(c) $(-2,$ 14. If the point (a) -10 15. The area (a) 150 s 16. Volume of where K (a) $\frac{1}{2}$ 17. A point r point is (a) $9x^2$ - (c) $9x^2$ - (c) $9x^2$ - (c) $9x^2$ - 18. If the surfrom the (a) 6 19. All the point (a) (a) x = 0 20. The equation (b) (1, 1, 1) (a) (1, 1, 1) 21. If $a+b+c$ (a) $(\lambda, \lambda, 2)$ (-1,6,6), (-	-1, 1), (-1, 1, 1), (0, 0, 1)	(b)	(1, 2, 3), (3, 2, 1), (2, 2, 2)
14. If the point (a) -10 (a) -10 15. The area (a) 150 s 16. Volume of where K (a) $\frac{1}{2}$ 17. A point r point is (a) $9x^2$ - (c) $9x^2$ - (c) $9x^2$ - (a) 6 19. All the su from the (a) 6 (a) Liberal Cube 20. The equation (a) Cube 21. The orthout (a) (1, 1, 1, 1) 22. If $a+b+x$ (a) $(\lambda, \lambda, 2)$ (a) $(\lambda, \lambda, 2)$ (a) $(\lambda, \lambda, 2)$, 4, -3), (4, -3, -2), (-3, -2, 4)	(d) (2, 0, -1), (3, 2, -2),	(5, 6, -4)
(a) -10 (a) -10 The area (a) 150 s (a) 150 s (b) Volume of where K (a) $\frac{1}{2}$ (c) $9x^2$ - (c) $9x^2$	oints (-1, 3, 2), (-4, 2, -2) and (5, 5, λ) are co	ollinear, then $\lambda =$	
15. The area (a) 150 s 16. Volume of where K (a) $\frac{1}{2}$ 17. A point r point is (a) $9x^2$ - (c) $9x^2$ - (c) $9x^2$ - (a) 6 19. All the point is (a) Cube 21. The orthorization (a) (1, 1, 1, 1) 22. If $a+b+c$ (a) ($\lambda, \lambda, \lambda$ 23. (-1,6,6), (-1)	(b) 5	(c) -5	(d) 10
(a) 150 s (a) 150 s (a) $\frac{1}{2}$ (b) Volume of where K (a) $\frac{1}{2}$ (c) $9x^2$ (c) $9x^2$ (a of triangle whose vertices are (1, 2, 3), (2,	5, -1) and (-1, 1, 2) is	[Kerala (Engg.) 2002
16. Volume of where K (a) $\frac{1}{2}$ 17. A point r point is (a) $9x^2$ - (c) $9x^2$ - (c) $9x^2$ - (a) 6 19. All the point is (a) Cube 21. The equation (a) (1, 1, 1, 1) 22. If $a+b+a$ (a) ($\lambda, \lambda, \lambda$ 23. (-1,6,6), (-1)	sq. units (b) 145 sq. units	(c) $\frac{\sqrt{155}}{2}$ sq. units	(d) $\frac{155}{2}$ sq. units
(a) $\frac{1}{2}$ 17. A point r point is (a) $9x^2$ - (c) $9x^2$ - (c) $9x^2$ - 18. If the su from the (a) 6 19. All the point (a) x = 0 20. The equation (a) Cube 21. The orthout (a) (1, 1, 1, 1) 22. If $a+b+b$ (a) $(\lambda, \lambda, 2)$ (-1,6,6), (-1)	of a tetrahedron is K (area of one face) (I K is	length of perpendicular from	n the opposite vertex upon it)
17. A point r point is (a) $9x^2$ - (c) $9x^2$ - (c) $9x^2$ - (c) $9x^2$ - 18. If the su from the su from the (a) 6 19. All the point (a) $x = 0$ 20. The equation (a) Cube (a) Cube (a) (1, 1, 1, 1) 21. The orthout (a) (1, 1, 1, 1, 1) 22. If $a+b+a$ (a) $(\lambda, \lambda, 2)$ 23. (-1,6,6), (-1)	(b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) $\frac{1}{6}$
(a) $9x^2 - (c) 9x^2 $	moves so that the sum of its distances from	n the points (4,0,0) and (-4,0,0)) remains 10. The locus of th
(a) $9x^2$ - (c) $19x^2$ - (c) 19			[MP PET 1988
(c) $9x^2 - 4x^2 - 4x^2$ (c) $9x^2 - 4x^2 $	$z^2 - 25y^2 + 25z^2 = 225$	(b) $9x^2 + 25y^2 - 25z^2 = 2$	25
18. If the surfrom the from the (a) 6 19. All the point (a) $x = 0$ 20. The equation (a) Cube 21. The orthor (a) (1, 1, 1, 1, 1) 22. If $a+b+c$ (a) $(\lambda, \lambda, 0, 0)$ 23. $(-1,6,6), (-1)$	$z^{2} + 25y^{2} + 25z^{2} = 225$	(d) $9x^2 + 25y^2 + 25z^2 + 25z^2$	25 = 0
(a) 6 19. All the point of the equation (a) $x = 0$ 20. The equation (a) Cube 21. The orthous (a) (1, 1, 1, 1) 22. If $a + b + b + b$ (a) $(\lambda, \lambda, 2)$ 23. (-1,6,6), (-1)	um of the squares of the distances of a poi le origin is	nt from the three coordinate	e axes be 36, then its distance
19. All the point (a) $x = 0$ (a) $x = 0$ 20. The equation (a) Cube 21. The orthout (a) (1, 1, 1, 1, 1) 22. If $a + b + 1$ (a) $(\lambda, \lambda, 1)$ 23. $(-1,6,6), (-1)$	(b) $3\sqrt{2}$	(c) $2\sqrt{3}$	(d) None of these
(a) $x = 0$ (a) $x = 0$ 20. The equation (a) Cube 21. The orthous (a) (1, 1, 1, 1, 22. If $a+b+c$ (a) $(\lambda, \lambda, 2, 3)$ (-1,6,6),(-1)	points on the <i>x</i> -axis have		[MP PET 1988
20. The equation (a) Cube 21. The orthough (a) $(1, 1, 1, 1)$ 22. If $a+b+1$ (a) $(\lambda, \lambda, 2)$ 23. $(-1,6,6), (-1)$	(b) $y = 0$	(c) $x = 0, y = 0$	(d) $y = 0, z = 0$
(a) Cube (a) Cube (a) (1, 1, (a) (1, 1, (a) $(\lambda, \lambda, \lambda, \lambda, \lambda)$ (c) (-1,6,6),(-	lations $ x = p$, $ y = p$, $ z = p$ in xuz space repr	resent	[Orissa IEE 2002
(a) Cube 21. The ortho (a) (1, 1, 22. If $a+b+c$ (a) $(\lambda, \lambda, \lambda, \lambda)$ 23. $(-1,6,6), (-1)$	(h) Phombus	(c) Sphere of radius n	(d) Point (n, n, n)
(a) (1, 1, (a) (1, 1, 22. If $a+b+c$ (a) $(\lambda, \lambda,$ 23. $(-1,6,6), $	k (b) Knombus	(c) sphere of radius p	(d) Fond (<i>p</i> , <i>p</i> , <i>p</i>)
(a) (1, 1, 22. If $a+b+$ (a) $(\lambda, \lambda,$ 23. $(-1,6,6), (-$	(h) (2, 2, 2)	(2,3,1) and $(3,1,2)$ is	(d) None of these
 (a) (λ, λ, 23. (-1,6,6),(- 	$+c = \lambda$ then circumcentre of the triangle wit	h vertices (a, b, c) : (b, c, a) and	(a) None of these $(c a b)$ is
23. (-1,6,6),(-	(1,2) (b) $(1/2, 1/2, 1/2)$	(c) $(\frac{1}{3}, \frac{3}{3}, \frac{3}{3}, \frac{3}{3})$	(d) None of these
23. (-1,6,6),(-	(4.0.0) are two worthings of $(4.0.0)$. If its control	(c) (x, 3, x, 3, x, 3)	its third contact is
	(-4,9,6) are two vertices of <u>ABC</u> . If its centre	of $U = (-5/3, 22/3, 22/3)$, then	its third vertex is
(a) (0,7,	7,10) (b) (7,0,10)	(c) (10, 0, 7)	(d) None of these
24. If points	s (2, 3, 4), (5, <i>a</i> , 6) and (7, 8, <i>b</i>) are collinear	, then values of a and b are	[AISSE 1989
(a) $a = 6$	6, $b = \frac{-22}{3}$ (b) $a = 6, b = \frac{22}{3}$	(c) $a = \frac{22}{3}, b = 6$	(d) $a = \frac{-22}{3}, b = -6$
		Directi	on cosines and Projection

25.	If a line makes angles o	f 30° and 45° with <i>x</i> -axis and <i>y</i>	-axis, then the angle made	by it with z-axis is
	(a) 45°	(b) 60°	(c) 120°	(d) None of these
26.	If a straight line in space one of the axes is	ce is equally inclined to the coor	rdinate axes, the cosine of	its angle of inclination to any
				[MP PET 1992]
	(a) $\frac{1}{3}$	(b) $\frac{1}{2}$	(c) $\frac{1}{\sqrt{3}}$	(d) $\frac{1}{\sqrt{2}}$
27.	If the length of a vector	be 21 and direction ratios be 2,	-3, 6, then its direction cos	sines are
	(a) $\frac{2}{21}, \frac{-1}{7}, \frac{2}{7}$	(b) $\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}$	(c) $\frac{2}{7}, \frac{3}{7}, \frac{6}{7}$	(d) None of these
28.	If <i>O</i> is the origin, $OP = 3$	s with d.r.'s -1 , 2, -2 then the co	o-ordinates of <i>P</i> are	[Rajasthan PET 2000]
	(a) (-1, 2, -2)	(b) (1, 2, 2)	(c) $\left(-\frac{1}{9}, \frac{2}{9}, -\frac{2}{9}\right)$	(d) (3, 6, - 9)
29.	The numbers 3, 4, 5 can	be		
	(a) Direction cosines of line in space	a line		(b) Direction ratios of a
	(c) Coordinates of a poi	nt on the plane $y = 4, z = 0$	(d) Co-ordinates of a po	int on the plane $x + y - z = 0$
30.	If <i>l, m, n</i> are the <i>d.c.</i> 's o	f a line, then		
	(a) $l^2 + m^2 + n^2 = 0$	(b) $l^2 + m^2 + n^2 = 1$	(c) $l+m+n=1$	(d) $l = m = n = 1$
31.	If a line lies in the octa	nt OXYZ and it makes equal ang	les with the axes, then	[MP PET 2001]
	(a) $l = m = n = \frac{1}{\sqrt{3}}$	(b) $l = m = n = \pm \frac{1}{\sqrt{3}}$	(c) $l = m = n = -\frac{1}{\sqrt{3}}$	(d) $l = m = n = \pm \frac{1}{\sqrt{2}}$
32.	If a line makes equal an	gle with axes, then its direction	ratios will be	
	(a) 1, 2, 3	(b) 3, 1, 2	(c) 3, 2, 1	(d) 1, 1, 1
33.	The coordinates of the p m, n. If $OP = r$, then	point P are (x, y, z) and the dir	ection cosines of the line C	<i>PP,</i> when <i>O</i> is the origin, are <i>l</i> ,
	(a) $l = x, m = y, n = z$	(b) $l = xr, m = yr, n = zr$	(c) $x = lr, y = mr, z = nr$	(d) None of these
34.	The direction ratios of concurrent edges of the	the diagonals of a cube which cube are coordinate axes)	joins the origin to the opp	oosite corner are (when the 3 [MP PET 1996]
	(a) $\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}$	(b) -1, 1, -1	(c) 2, -2, 1	(d) 1, 2, 3
35.	If the direction ratios of	a line are 1, -3 , 2, then the dire	ection cosines of the line ar	re [MP PET 1997]
	(a) $\frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}}$	(b) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$	(c) $\frac{-1}{\sqrt{14}}, \frac{3}{\sqrt{14}}, \frac{-2}{\sqrt{14}}$	(d) $\frac{-1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}$
36.	If a line make α, β, γ wi	th the positive direction of <i>x, y</i> :	and z-axis respectively. The	en $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma$ is
				[Orissa JEE 2002; MP PET 2002]
	(a) 1/2	(b) -1/2	(C) -1	(d) 1
37.	The direction-cosines of	the line joining the points (4, 3	3, -5) and (-2, 1, -8) are [MP PET 2001; Kurukshetra CEE 1998]
	(a) $\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)$	(b) $\left(\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right)$	(c) $\left(\frac{6}{7}, \frac{3}{7}, \frac{2}{7}\right)$	(d) None of these
38.	The direction ratios of t	he line joining the points (4, 3,	-5) and (-2, 1, -8) are	[AI CBSE 1984; MP PET 1988]

CLICK HERE

(»

356 Three Dimensional Co-ordinate

The coordinates of a	point <i>P</i> are (3, 12, 4) w	vith respect to origin O, then the	direction cosines of OP are	[MP PET 1996]
(a) 3, 12, 4	(b) $\frac{1}{4}, \frac{1}{3}, \frac{1}{2}$	(c) $\frac{3}{\sqrt{13}}, \frac{1}{\sqrt{13}}, \frac{2}{\sqrt{13}}$	(d) $\frac{3}{13}, \frac{12}{13}, \frac{4}{13}$	
The direction cosines	s of a line segment <i>AB</i>	are $\frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}, \frac{-2}{\sqrt{17}}$. If $AB = \sqrt{17}$	and the coordinates of A ar	e (3, −6,

(d) None of these

[MP PET 1994,95,99; Rajasthan PET 2003]

[AI CBSE 1985]

🕀 www.studentbro.in

The direction cosines of a line segment AB 40. 10), then the coordinates of B are

(c) 2, 4, -13

- (a) (1, -2, 4)(b) (2, 5, 8) (c) (-1, 3, -8) (d) (1, -3, 8)
- If $\left(\frac{1}{2}, \frac{1}{3}, n\right)$ are the direction cosines of a line, then the value of *n* is 41. [Kerala (Engg.) 2002]

(a)
$$\frac{\sqrt{23}}{6}$$
 (b) $\frac{23}{6}$ (c) $\frac{2}{3}$ (d) $\frac{3}{2}$

If a line makes the angle α, β, γ with three dimensional coordinate axes respectively, then 42. $\cos 2\alpha + \cos 2\beta + \cos 2\gamma =$

	(a) -2	(b) -1	(c) 1	(d) 2
43.	A line makes angles of	f 45° and 60° w	ith the positive axes of X and Y respectively.	The angle made by the same

- line with the positive axis of Z, is [MP PET 1997] (b) 60° or 90° (a) 30° or 60° (c) 90° or 120° (d) 60° or 120°
- If α, β, γ be the angles which a line makes with the positive direction of coordinate axes, then 44. $\sin^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$

[Rajasthan PET 2000; AMU 2002; MP PET 1989,98,2000,03; Kerala (Engg.) 2001]

- (b) 1 (a) 2 (c) 3 (d) 0
- A line makes angles α , β , γ with the coordinate axes. If $\alpha + \beta = 90^{\circ}$, then $\gamma =$ 45.
 - (b) 90° (c) 180° (a) 0° (d) None of these
- The coordinates of the points P and Q are (x_1, y_1, z_1) and (x_2, y_2, z_2) respectively, then the projection of the line 46. PQ on the line whose direction cosines are l, m, n, will be
 - (b) $\left(\frac{x_2-x_1}{l}\right) + \left(\frac{y_2-y_1}{m}\right) + \left(\frac{z_2-z_1}{n}\right)$ (a) $(x_2 - x_1)l + (y_2 - y_1)m + (z_2 - z_1)n$ (c) $\frac{x_1}{l} + \frac{y_1}{m} + \frac{z_1}{n}$ (d) $\frac{x_2}{l} + \frac{y_2}{m} + \frac{z_2}{n}$
- The projection of the line segment joining the points (-1, 0, 3) and (2, 5, 1) on the line whose direction ratios 47. are 6, 2, 3, is

(a) 10/7 (b) 22/7 (c) 18/7 (d) None of these The projection of any line on coordinate axes be respectively 3, 4, 5, then its length is[MP PET 1995; Rajasthan PET 2001 48. (c) $5\sqrt{2}$ (a) 12 (b) 50 (d) None of these If θ is the angle between the lines *AB* and *CD*, then projection of line segment *AB* on line *CD* is 49. [MP PET 1995] (d) $CD\cos\theta$ (b) $AB \cos \theta$ (c) AB $\tan \theta$ (a) $AB \sin \theta$

CLICK HERE

Get More Learning Materials Here :

(a) $\left(\frac{6}{7}, \frac{2}{7}, \frac{3}{7}\right)$

39.

(b) 6, 2, 3

- 50. The projections of a line on the co-ordinate axes are 4, 6, 12. The direction cosines of the line are
 - (a) $\frac{2}{7}, \frac{3}{7}, \frac{6}{7}$ (b) 2, 3, 6 (c) $\frac{2}{11}, \frac{3}{11}, \frac{6}{11}$ (d) None of these
- **51.** The projections of segment *PQ* on the coordinate planes are -9, 12, -8 respectively. The direction cosines of *PQ* are **[Pb. CET 1998]**

(a)
$$< -\frac{9}{\sqrt{(17)}}, \frac{12}{\sqrt{(17)}}, \frac{-8}{\sqrt{(17)}} >$$
 (b) $< -9, 12, -8 >$
(c) $< \frac{-9}{289}, \frac{12}{289}, \frac{-8}{289} >$ (d) $< \frac{-9}{17}, \frac{12}{17}, \frac{-8}{17} >$

(b) 2, -3, 6

52. The projections of a line segment on x, y, z axes are 12, 4, 3. The length and the direction cosines of the line segments are

[Kerala (Engg.) 2000]

```
(a) 13, <12/13, 4/13, 3/13 > (b) 19, <12/19, 4/19, 3/19 > (c) 11, <12/11, 4/11, 3/11 > (d) None of these
```

53. The coordinates of *A* and *B* be (1, 2, 3) and (7, 8, 7), then the projections of the line segment *AB* on the coordinate axes are

	(a) 6, 6, 4	(b) 4, 6, 4	(c) 3, 3, 2	(d) 2, 3, 2
54.	A line segment (vector)	has length 21 and direction rat	ios (2, –3, 6). If the line m	akes an obtuse angle with <i>x</i> -
	axis, the components of	the line (vector) are		

(c) -18, 27, -54

```
(a) 6, -9, 18
```

Angle between Two Lines

🕀 www.studentbro.in

(d) -6, 9, -18

- ·	
Rasic	Level
Dusic	LUVUL

The angle between the pair of lines with direction ratios (1, 1, 2) and $(\sqrt{3}-1, -\sqrt{3}-1, 4)$ is [MP PET 1997, 2000] 55. (c) 60° (b) 45° (a) 30° (d) 90° The angle between a line with direction ratios 2:2:1 and a line joining (3, 1, 4) to (7, 2, 12) is 56. [DCE 2002] (a) $\cos^{-1}(2/3)$ (b) $\cos^{-1}(-2/3)$ (c) $\tan^{-1}(2/3)$ (d) None of these 57. The angle between the lines whose direction cosines are proportional to (1, 2, 1) and (2, -3, 6) is (b) $\cos^{-1}\left(\frac{1}{7\sqrt{6}}\right)$ (c) $\cos^{-1}\left(\frac{3}{7\sqrt{6}}\right)$ (a) $\cos^{-1}\left(\frac{2}{7\sqrt{6}}\right)$ (d) $\cos^{-1}\left(\frac{5}{7\sqrt{6}}\right)$ 58. If the vertices of a triangle are A (1, 4, 2), B(-2, 1, 2), C(2, -3, 4), then the angle B is equal to (c) $\cos^{-1}(\sqrt{6}/3)$ (d) $\cos^{-1}\sqrt{3}$ (a) $\cos^{-1}(1/\sqrt{3})$ (b) $\pi/2$ If the coordinates of the points P, Q, R, S be (1, 2, 3), (4, 5, 7), (-4, 3, -6) and (2, 0, 2) respectively, then 59. (a) $PQ \parallel RS$ (b) $PQ \perp RS$ (c) PQ = RS(d) None of these If the coordinates of the points *A*, *B*, *C*, *D* be (1, 2, 3), (4, 5, 7), (-4, 3, -6) and (2, 9, 2) respectively, then the 60. angle between the lines AB and CD is (c) $\frac{\pi}{2}$ (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (d) None of these 61. If the angle between the lines whose direction ratios are 2, -1, 2 and a, 3, 5 be 45°, then a =

CLICK HERE

			Three Dimension	al Co-ordinate Geometry
	(a) 1	(b) 2	(c) 3	(d) 4
62.	If O be the origin and $P($	(2, 3, 4) and $Q(1, b, 1)$ be two point	its such that $\mathit{OP} \perp \mathit{OQ}$, then	<i>b</i> =
	(a) 2	(b) -2	(c) No such real <i>b</i> exists	(d) None of these
63.	If d.r.'s of two straight	lines are 5, -12, 13 and -3, 4, 5	then, angle between them is	[Rajasthan PET 2001]
	(a) $\cos^{-1}\left(\frac{2}{65}\right)$	(b) $\cos^{-1}\left(\frac{1}{65}\right)$	(c) $\cos^{-1}\left(\frac{3}{65}\right)$	(d) $\frac{\pi}{3}$
64.	If direction ratio of two	lines are a_1, b_1, c_1 and a_2, b_2, c_2 the	hen these lines are parallel	if and only if
	(a) $a_1 = a_2, b_1 = b_2, c_1 = c_2$	(b) $a_1a_2 + b_1b_2 + c_1c_2 = 0$	(c) $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$	(d) None of these
65.	If $A(k, 1, -1)$, $B(2k, 0, 2)$ and	d $C(2+2k, k, 1)$ be such that the	line $AB \perp BC$, then the valu	e of <i>k</i> will be
	(a) 1	(b) 2	(c) 3	(d) 0
66.	A(a,7,10), B(-1, 6, 6) and (C(-4, 9, 6) are the vertices of a right	ight angled isosceles triangl	e. If $\angle ABC = 90^\circ$, then $a =$
	(a) 0	(b) 2	(c) -1	(d) -3
		Advance I	Level	
67.	The angle between two o	diagonals of a cube will be	[MP PET 1996, 97,	2000; Rajasthan PET 2000,02]
	(a) $\sin^{-1}\frac{1}{3}$	(b) $\cos^{-1}\frac{1}{3}$	(c) Constant	(d) Variable
68.	If a line makes $a^2 a + a a^2 a + $	angles $\alpha, \beta, \gamma, \delta$ with the	four diagonals of a	cube, then the value of
	$\cos \alpha + \cos \beta + \cos \gamma + \alpha$	<i>bs 0</i> =		[Rajasthan PET 2002]
	(a) 1	(b) $\frac{4}{3}$	(c) Constant	(d) Variable
69.	The angle between the li	ines whose direction cosines sa	tisfy the equations $l+m+n =$	$= 0, l^2 + m^2 - n^2 = 0$ is given by
			[MP	PET 1993; Rajasthan PET 2001]
	(a) $\frac{2\pi}{3}$	(b) $\frac{\pi}{6}$	(c) $\frac{5\pi}{6}$	(d) $\frac{\pi}{3}$
7 0.	If three mutually perpendent three mutually perpendent three having direction cosines	endicular lines have direction : $l_1 + l_2 + l_3$, $m_1 + m_2 + m_3$ and $n_1 + n_2$	cosines $(l_1, m_1, n_1), (l_2, m_2, n_2),$ + n_3 make an angle of	and (l_3, m_3, n_3) , then the line with each other
	(a) 0°	(b) 30°	(c) 60°	(d) 90°
71.	The straight lines whose	e direction cosines are given by	al+bm+cn=0, fmn+gnl+hlm	=0 are perpendicular, if
	(a) $\frac{f}{a} + \frac{g}{b} + \frac{h}{c} = 0$	(b) $\sqrt{\frac{a}{f}} + \sqrt{\frac{b}{g}} + \sqrt{\frac{c}{h}} = 0$	(c) $\sqrt{af} = \sqrt{bg} = \sqrt{ch}$	(d) $\sqrt{\frac{a}{f}} = \sqrt{\frac{b}{g}} = \sqrt{\frac{c}{h}}$
72.	The angle between th $2lm + 2nl - mn = 0$, is	e lines whose direction cosi	ines are connected by th	e relations $l+m+n=0$ and
	(a) $\frac{\pi}{3}$	(b) $\frac{2\pi}{3}$	(c) <i>π</i>	(d) None of these
73.	A(3, 2, 0), B(5, 3, 2), C(-9, 6, - coordinates of <i>D</i> are	-3) are three points forming	a triangle and <i>AD</i> is the	bisector of the $\angle BAC$, then

Get More Learning Materials Here : 📕

r www.studentbro.in

$< l_2, m_2, n_2 >$. Then the d.c. of a line \perp to + $m_2, n_1 + n_2 >$
$+m_2, n_1 + n_2 >$
1626
; l_3, m_3, n_3 are coplanar iff $\begin{vmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{vmatrix} = 0$
It is possible to find a line
None of these
re l,m,n and $l + \partial l,m + \partial m, n + \partial n$. If angle is equal to
$a \cdot \delta n + \delta n \cdot \delta l$ (d) None of these
nal to 1, -2, -1 and 3, -2, 3 then direction
$\pm 3/\sqrt{29}, \mp 2/\sqrt{29}$
iese
$\frac{1}{3}$ (d) $-\frac{1}{3}, -\frac{1}{3}, \frac{1}{3}$
Straight Line
allel to z-axis, is [MP PET 1995]
$\frac{b}{a} = \frac{z-c}{0}$ (d) $\frac{x-a}{0} = \frac{y-b}{0} = \frac{z-c}{1}$
[MP PET 2002]
(d) $\frac{x}{0} = \frac{y}{0} = \frac{z}{1}$
(-b, b-c, c-a), is [MP PET 1994]
$\frac{b}{c} = \frac{z-c}{c}$ (d) $\frac{x-a}{2a-b} = \frac{y-b}{2b-c} = \frac{z-c}{2c-a}$
y inclined to the axes, are
2 z+4
$-=\frac{3}{3}$ (d) None of these
-

(a)
$$\frac{x-a}{1} = \frac{y-b}{0} = \frac{z-c}{0}$$
 (b) $\frac{x-a}{0} = \frac{y-b}{1} = \frac{z-c}{0}$ (c) $\frac{x-a}{0} = \frac{y-b}{0} = \frac{z-c}{1}$ (d) $\frac{x-a}{1} = \frac{y-b}{1} = \frac{z-c}{1}$

84. Equation of the line passing through the point (1, 2, 3) and parallel to the line $\frac{x-6}{12} = \frac{y-2}{4} = \frac{z+7}{5}$ is given by

- (a) $\frac{x+1}{12} = \frac{y+2}{4} = \frac{z+3}{5}$ (b) $\frac{x-1}{l} = \frac{y-2}{m} = \frac{z-3}{n}$, where 12l+4m+5n=0(c) $\frac{x-1}{12} = \frac{y-2}{4} = \frac{z-3}{5}$ (d) None of these
- **85.** Let *G* be the centroid of the triangle formed by the points (1, 2, 0), (2, 1, 1), (0, 0, 2). Then equation of the line *OG* is given by

(a)
$$x = y = z$$
 (b) $\frac{x-1}{1} = \frac{y}{1} = \frac{z}{1}$ (c) $\frac{x-1}{1} = \frac{y-1}{1} = \frac{z-1}{0}$ (d) None of these

86. The direction cosines of the line $\frac{3x+1}{-3} = \frac{3y+2}{6} = \frac{z}{-1}$ are

(a)
$$\left(\frac{1}{3}, \frac{2}{3}, 0\right)$$
 (b) $\left(-1, \frac{2}{3}, 1\right)$ (c) $\left(-\frac{1}{2}, 1, -\frac{1}{2}\right)$ (d) $\left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}\right)$

87. The direction cosines of the line x = y = z are

89.

(a) $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$ (b) $\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$ (c) 1, 1, 1 (d) None of these

88. The direction ratio's of the line x - y + z - 5 = 0 = x - 3y - 6 are

(a) 3, 1, -2 (b) 2, -4, 1 (c)
$$\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}$$
 (d) $\frac{2}{\sqrt{41}}, \frac{-4}{\sqrt{41}}, \frac{1}{\sqrt{41}}$
. The angle between two lines $\frac{x+1}{2} = \frac{y+3}{2} = \frac{z-4}{-1}$ and $\frac{x-4}{1} = \frac{y+4}{2} = \frac{z+1}{2}$ is [MP I

(a) $\cos^{-1}\left(\frac{1}{9}\right)$ (b) $\cos^{-1}\left(\frac{2}{9}\right)$ (c) $\cos^{-1}\left(\frac{3}{9}\right)$ (d) $\cos^{-1}\left(\frac{4}{9}\right)$

90. The angle between the lines $\frac{x+4}{1} = \frac{y-3}{2} = \frac{z+2}{3}$ and $\frac{x}{3} = \frac{y-1}{-2} = \frac{z}{1}$ is

(a)
$$\sin^{-1}\left(\frac{1}{7}\right)$$
 (b) $\cos^{-1}\left(\frac{2}{7}\right)$ (c) $\cos^{-1}\left(\frac{1}{7}\right)$ (d) None of these

91. The angle between the lines $\frac{x}{1} = \frac{y}{0} = \frac{z}{-1}$ and $\frac{x}{3} = \frac{y}{4} = \frac{z}{5}$ is

(a)
$$\cos^{-1}\frac{1}{5}$$
 (b) $\cos^{-1}\frac{1}{3}$ (c) $\cos^{-1}\frac{1}{2}$ (d) $\cos^{-1}\frac{1}{4}$

92. The value of λ for which the lines $\frac{x-1}{1} = \frac{y-2}{\lambda} = \frac{z+1}{-1}$ and $\frac{x+1}{-\lambda} = \frac{y+1}{2} = \frac{z-2}{1}$ are perpendicular to each other is

(a) 0 (b) 1 (d) None of these The angle between the straight lines $\frac{x+1}{2} = \frac{y-2}{5} = \frac{z+3}{4}$ and $\frac{x-1}{1} = \frac{y+2}{2} = \frac{z-3}{-3}$ is 93. [MP PET 2000] (a) 45° (b) 30° (d) 90° The angle between the lines 2x = 3y = -z and 6x = -y = -4z, is [MP PET 1994,99] 94. (a) 0° (b) 30° (c) 45° (d) 90°

Get More Learning Materials Here :

🕀 www.studentbro.in

[MP PET 1989]

[MP PET 1999]

[MP PET 1996]

95.	The angle between the l	ines $x = 1$, $y = 2$ and $y = -1$ and z	z=0 is	[Kurukshetra CEE 1993]
	(a) 90°	(b) 30°	(c) 60°	(d) 0°
96.	The straight line $\frac{x-3}{3} =$	$\frac{y-2}{1} = \frac{z-1}{0}$ is		[Rajasthan PET 2002]
	(a) Parallel to <i>x</i> -axis	(b) Parallel to y-axis	(c) Parallel to z-axis	(d) Perpendicular to z-axis
97.	The lines $\frac{x-1}{2} = \frac{y-1}{3} = \frac{z}{3}$	$\frac{-3}{0}$ and $\frac{x-2}{0} = \frac{y-3}{0} = \frac{z-4}{1}$ are		
	(a) Parallel	(b) Skew	(c) Coincident	(d) Perpendicular
98.	The straight lines $\frac{x-1}{1}$ =	$=\frac{y-2}{2}=\frac{z-3}{3}$ and $\frac{x-1}{2}=\frac{y-2}{2}=\frac{z-3}{2}$	$\frac{-3}{-2}$ are	
	(a) Parallel lines angle	(b) Intersecting at 60°	(c) Skew lines	(d) Intersecting at right
99.	The angle between the l	ines $\frac{x-2}{3} = \frac{y+1}{-2}$, $z = 2$ and $\frac{x-1}{1}$	$= \frac{2y+3}{3} = \frac{z+5}{2}$ is	
	(a) $\pi/2$	(b) $\pi/3$	(c) $\pi/6$	(d) None of these
100.	The lines $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and	$\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z-3}{-6}$ are		[Kurukshetra CEE 2000]
	(a) Parallel	(b) Intersecting	(c) Skew	(d) Coincident
101.	The lines $\frac{x-1}{2} = \frac{y-2}{4} = \frac{x-1}{4}$	$\frac{z-3}{7}$ and $\frac{x-1}{4} = \frac{y-2}{5} = \frac{z-3}{7}$ are	2	
	(a) Parallel	(b) Intersecting	(c) Skew	(d) Perpendicular
102.	Lines $\mathbf{r} = \mathbf{a}_1 + t\mathbf{b}_1$ and $\mathbf{r} =$	= a ₂ + <i>s</i> b ₂ are parallel iff		[Kurukshetra CEE 1992]
	(a) \mathbf{b}_1 is parallel to \mathbf{a}_2 -	- a ₁	(b)	\mathbf{b}_2 is parallel to $\mathbf{a}_2 - \mathbf{a}_1$
	(c) $\mathbf{b}_1 = \lambda \mathbf{b}_2$ for some relations	eal λ	(d) None of these	
103.	The equation of the line	passing through the points $a_1 \mathbf{i}$ +	$a_2\mathbf{j} + a_3\mathbf{k}$ and $b_1\mathbf{i} + b_2\mathbf{j} + b_3\mathbf{k}$	[Rajasthan PET 2002]
	(a) $(a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}) + t(b_1\mathbf{i}$	$+b_2\mathbf{j}+b_3\mathbf{k}$)	(b) $(a_1\mathbf{i} + a_2\mathbf{j} + a_3\mathbf{k}) - t(b_1\mathbf{i} + b_2\mathbf{k})$	$p_2 \mathbf{j} + b_3 \mathbf{k}$)
	(c) $a_1(1-t)\mathbf{i} + a_2(1-t)\mathbf{j} + a_1(1-t)\mathbf{j} + a_2(1-t)\mathbf{j} + $	$_{3}(1-t)\mathbf{k} + (b_{1}\mathbf{i} + b_{2}\mathbf{j} + b_{3}\mathbf{k}) t$	(d) None of these	
104.	The vector equation of t	he line joining the points $\mathbf{i} - 2\mathbf{j} + \mathbf{j}$	k and $-2\mathbf{j} + 3\mathbf{k}$ is	[MP PET 2003]
	(a) $r = t(i + j + k)$	(b) $\mathbf{r} = t_1(\mathbf{i} - 2\mathbf{j} + \mathbf{k}) + t_2(3\mathbf{k} - 2\mathbf{j})$	(c) $r = (i - 2j + k) + t(2k - i)$	(d) $r = t(2k - i)$
105.	The acute angle betwee	en the line joining the points	(2, 1, -3), (-3, 1, 7) and a line	e parallel to $\frac{x-1}{3} = \frac{y}{4} = \frac{z+3}{5}$
	through the point (-1, 0,	4) is		[MP PET 1998]
	(a) $\cos^{-1}\left(\frac{7}{5\sqrt{10}}\right)$	(b) $\cos^{-1}\left(\frac{1}{\sqrt{10}}\right)$	(c) $\cos^{-1}\left(\frac{3}{5\sqrt{10}}\right)$	(d) $\cos^{-1}\left(\frac{1}{5\sqrt{10}}\right)$
106.	The shortest distance be	etween the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z}{-1}$	$\frac{-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$	is [MP PET 2002]
	(a) $\sqrt{30}$	(b) $2\sqrt{30}$	(c) $5\sqrt{30}$	(d) $3\sqrt{30}$
107.	Shortest distance betwe	en lines $\frac{x-6}{1} = \frac{y-2}{-2} = \frac{z-2}{2}$ and	$\frac{x+4}{3} = \frac{y}{-2} = \frac{z+1}{-2}$ is	
	(a) 108	(b) 9	(c) 27	(d) None of these
108.	The lines l_1 and l_2 inter	sect. The shortest distance betw	veen them is	

CLICK HERE

Get More Learning Materials Here : 💻

Regional www.studentbro.in

115.	The perpendicular d	istance of the point (2, 4, -1)	from the line $\frac{x+5}{1} = \frac{y+3}{4} = \frac{z-6}{-9}$	is [Kurukshetra CEE 199
	(a) 3	(b) 5	(c) 7	(d) 9
116.	Distance of the poin	at (x_1, y_1, z_1) from the line $\frac{x-z_1}{y_1}$	$\frac{x_2}{m} = \frac{y - y_2}{m} = \frac{z - z_2}{n}$, where <i>l</i> , <i>m</i> and	d n are the direction cosines
	line is	ł.	m n	
	(a) $\sqrt{(x_1 - x_2)^2 + (y_1 - y_1)^2}$	$(z_2)^2 + (z_1 - z_2)^2 - [l(x_1 - x_2) + m(y_1 - y_2)]$	$(-y_2) + n(z_1 - z_2)]^2$	
	(b) $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$	$\overline{(y_1)^2 + (z_2 - z_1)^2}$		
	(c) $\sqrt{(x_2 - x_1)l + (y_2 - y_1)}$	$\overline{y_1}m + (z_2 - z_1)n$		
	(d) None of these			
117.	The length of the pe	rpendicular from point (1, 2,	3) to the line $\frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$	is [MP PET 199
	(a) 5	(b) 6	(c) 7	(d) 8
118.	The foot of the perp	endicular from (0, 2, 3) to the	e line $\frac{x+3}{5} = \frac{y-1}{2} = \frac{z+4}{3}$ is	
	(a) (-2, 3, 4)	(b) (2, -1, 3)	(c) (2, 3, -1)	(d) (3, 2, -1)
119.	The foot of the perp	endicular from (1, 2, 3) to the	e line joining the points (6, 7, 7)	and (9, 9, 5) is
	(a) (5, 3, 9)	(b) (3, 5, 9)	(c) (3, 9, 5)	(d) (3, 9, 9)
20.	If the equation of a perpendicular distant	line through a point a and pance from the point c is	arallel to vector b is $\mathbf{r} = \mathbf{a} + t\mathbf{b}$, v	where <i>t</i> is a parameter, then i [MP PET 199]
	(a) $ (\mathbf{c}-\mathbf{b})\times\mathbf{a} \div \mathbf{a} $	(b) $ (\mathbf{c}-\mathbf{a}) \times \mathbf{b} \div \mathbf{b} $	(C) $ (\mathbf{a}-\mathbf{b})\times\mathbf{c} \div \mathbf{c} $	(d) $ (\mathbf{a}-\mathbf{b})\times\mathbf{c} \div \mathbf{a}+\mathbf{c} $
21.	The distance of the	e point $B(\mathbf{i}+2\mathbf{j}+3\mathbf{k})$ from the	ne line which is passing throu	gh $A(4\mathbf{i}+2\mathbf{j}+2\mathbf{k})$ and which
	parallel to the vecto	$\vec{C} = 2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k} \text{is}$		[Roorkee 199
	(a) 10	(b) $\sqrt{10}$	(c) 100	(d) None of these
_				Plane
		Ba	asic Level	
122	The ratio in which t	he line joining the points (a,	b, c) and (-a, -c, -b) is divided b	y the <i>xy</i> -plane is [MP PET 199
122.	(a) $a:b$	(b) <i>b</i> : <i>c</i>	(c) c:a	(d) c:b
122,		he line joining $(2 \land E)$ $(2 E)$	-4) is divided by the <i>yz</i> -plane is	[MP PET 2002; Rajasthan PET
122.	The ratio in which t	$\frac{1}{2} = \frac{1}{2} = \frac{1}$		
23.	The ratio in which the factor of the ratio in which the factor of the fa	(b) 3:2	(c) -2:3	(d) 4:-3
122. 123. 124.	The ratio in which the (a) 2:3 <i>xy</i> -plane divides the	(b) 3:2 line joining the points (2, 4,	(c) -2:3 5) and (-4, 3, -2) in the ratio	(d) 4:-3 [MP PET 198
123. 123. 124.	The ratio in which the (a) 2:3 xy-plane divides the (a) 3:5	(b) 3:2 e line joining the points (2, 4, 5) (b) 5:2	(c) -2:3 5) and (-4, 3, -2) in the ratio (c) 1:3	(d) 4:-3 [MP PET 198 (d) 3:4
122. 123. 124. 125.	The ratio in which the (a) 2:3 <i>xy</i> -plane divides the (a) 3:5 The coordinates of t	 (b) 3:2 e line joining the points (2, 4, 5) (b) 5:2 he point where the line through the point where the point where the line through the point where th	(c) -2:3 5) and (-4, 3, -2) in the ratio (c) 1:3 ngh <i>P</i> (3, 4, 1) and <i>Q</i> (5, 1, 6) cross	 (d) 4:-3 [MP PET 198 (d) 3:4 sses the <i>xy</i>-plane are [MP PET
122. 123. 124. 125.	The ratio in which the (a) 2:3 <i>xy</i> -plane divides the (a) 3:5 The coordinates of the (a) $\frac{3}{5}, \frac{13}{5}, \frac{23}{5}$	(b) $3:2$ e line joining the points (2, 4, 5) (b) $5:2$ he point where the line throw (b) $\frac{13}{5}, \frac{23}{5}, \frac{3}{5}$	(c) $-2:3$ 5) and $(-4, 3, -2)$ in the ratio (c) $1:3$ igh P (3, 4, 1) and Q (5, 1, 6) cross (c) $\frac{13}{5}, \frac{23}{5}, 0$	 (d) 4:-3 [MP PET 198 (d) 3:4 sses the <i>xy</i>-plane are [MP PET (d) 13/5, 0, 0

CLICK HERE

Regional www.studentbro.in

	(a) -3	(b) 3	(c) $-\frac{1}{3}$	(d) $\frac{1}{3}$	
127.	XOZ plane divides the jo	in of (2, 3, 1) and (6, 7, 1) in the	ratio	[EAMCI	ET 2003]
-	(a) 3:7	(b) 2:7	(c) -3:7	(d) -2:7	
128.	The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 3$ n	neets the coordinate axes in A, E	3, C. The centroid of the tria	ngle <i>ABC</i> is	
	(a) $\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)$	(b) $\left(\frac{3}{a},\frac{3}{b},\frac{3}{c}\right)$	(c) $\left(\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\right)$	(d) (<i>a</i> , <i>b</i> , <i>c</i>)	
129.	The ratio in which the pl	lane $\mathbf{r} \cdot (\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) = 17$ divides th	e line joining the points –2i	i + 4j + 7k and $3i - 5j + 3i - 5j + 5j + 3i - 5j + 5j + 3i - 5i - 5j + 3i - 5i - 5i + 3i - 5$	8k is
			[Kur	rukshetra CEE 1996; D	CE 1999]
	(a) 1:5	(b) 1:10	(c) 3:5	(d) 3:10	
130.	If a plane cuts off interc	cepts $OA = a$, $OB = b$, $OC = c$ from	n the coordinate axes, then	the area of the trian	gle ABC
	=				
	(a) $\frac{1}{2}\sqrt{b^2c^2+c^2a^2+a^2b^2}$		(b) $\frac{1}{2}(bc + ca + ab)$		
	(c) $\frac{1}{2}abc$		(d) $\frac{1}{2}\sqrt{(b-c)^2+(c-a)^2+(a-b)^2}$	$\overline{b})^2$	
131.	The plane $\frac{x}{2} + \frac{y}{3} + \frac{z}{4} = 1$ c	uts the axes in A, B, C, then the	area of the $\triangle ABC$ is	[MP PI	ET 2000]
	(a) $\sqrt{29}$	(b) $\sqrt{41}$	(c) $\sqrt{61}$	(d) None of these	
132.	The volume of the tetrah	nedron included between the pla	ane $2x - 3y + 4z - 12 = 0$ and the table 1 and the second secon	he three coordinate p	olanes is
	(a) $3\sqrt{(29)}$	(b) $6\sqrt{(29)}$	(C) 12	(d) None of these	
133.	A point located in space from <i>zx</i> plane, the locus	moves in such a way that sum o of the point is	of its distances from <i>xy</i> -and	yz plane is equal to	distance
	(a) $x - y + z = 2$	(b) $x + y - z = 0$	(c) $x + y - z = 2$	(d) $x - y + z = 0$	
134.	The equation of a plane	parallel to <i>x</i> - axis is		[D	CE 2001]
	(a) $ax + by + cz + d = 0$	(b) $ax + by + d = 0$	(c) $by + cz + d = 0$	(d) $ax + cz + d = 0$	
135.	In the space the equation	h $by + cz + d = 0$ represents a plar	ne perpendicular to the plan	е [ЕАМСІ	ET 2002]
	(a) <i>YOZ</i>	(b) <i>Z</i> = <i>k</i>	(c) <i>ZOX</i>	(d) <i>XOY</i>	
136.	The intercepts of the pla	the $5x - 3y + 6z = 60$ on the coord	inate axes are	[MP P	ET 2001]
	(a) (10, 20, -10)	(b) (10, -20, 12)	(c) (12, -20, 10)	(d) (12, 20, -10)	
137.	The coordinates of the $PA^2 - PB^2 = k$ where k is	points <i>A</i> and <i>B</i> are (2, 3, 4) ar constant, then the locus of <i>P</i> is	nd (-2, 5, -4) respectively.	If a point <i>P</i> moves,	so that
	(a) A line	(b) A plane	(c) A sphere	(d) None of these	
138.	In a three dimensional <i>x</i>	<i>yz</i> space the equation $x^2 - 5x + 6$	= 0 represents	[Orissa JI	EE 2002]
	(a) Points	(b) Plane	(c) Curves	(d) Pair of straight	line
139.	The equation of <i>yz</i> -plane	e is		[MP P	ET 1988]
	(a) $x = 0$	(b) $y = 0$	(c) $z = 0$	(d) $x + y + z = 0$	

CLICK HERE

》

140. The intercepts of the plane 2x - 3y + 4z = 12 on the coordinate axes are given by

			Three Dimensio	onal Co-ordinate Geometry						
	(a) 2, -3, 4	(b) 6, -4, -3	(c) 6, -4, 3	(d) 3, -2, 1.5						
141.	The locus of the point	(x, y, z,) for which $z = k$, is								
	(a) A plane parallel to	xy plane at a distance k from it	(b) A plane parallel to y	z plane at a distance <i>k</i> from it						
	(c) A plane parallel to	zx plane at a distance k from it	(d) A line parallel to z-a	xis at a distance <i>k</i> from it						
142.	A point (<i>x</i> , y, z) moves	parallel to <i>x</i> - axis. Which of the	three variables <i>x, y, z</i> rem	ains fixed						
	(a) <i>x</i>	(b) x and y	(c) <i>y</i> and <i>z</i>	(d) z and x						
143.	If a , b , c are three non-	-coplanar vectors, then the vector	r equation $\mathbf{r} = (1 - p - q) \mathbf{a} + p$	$p\mathbf{b} + q\mathbf{c}$ represents a [EAMCET 20						
	(a) Straight line		(b) Plane							
	(c) Plane passing thro	ugh the origin	(d) Sphere							
144.	The direction cosines of	of the normal to the plane $3x + 4y$	+12z = 52 will be	[MP PET 1997]						
	(a) 3, 4, 12	(b) -3, -4, -12	(c) $\frac{3}{13}, \frac{4}{13}, \frac{12}{13}$	(d) $\frac{3}{\sqrt{13}}, \frac{4}{\sqrt{13}}, \frac{12}{\sqrt{13}}$						
I45.	The direction cosines o	of the normal to the plane $x + 2y - 2y = 2y - 2y$	3z + 4 = 0 are	[MP PET 1996]						
	(a) $\frac{1}{\sqrt{14}}, -\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$	(b) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$	(c) $-\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$	(d) $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, -\frac{3}{\sqrt{14}}$						
46.	Normal form of the pla	ane $2x + 6y + 3z = 1$ is								
	(a) $\frac{2}{7}x + \frac{6}{7}y + \frac{3}{7}z = 1$	(b) $\frac{2}{7}x + \frac{6}{7}y + \frac{3}{7}z = \frac{1}{7}$	(c) $\frac{2}{7}x + \frac{6}{7}y + \frac{3}{7}z = 0$	(d) None of these						
47.	The equation of a plane	e which cuts equal intercepts of u	unit length on the axes, is	[MP PET 1996]						
	(a) $x + y + z = 0$	(b) $x + y + z = 1$	(c) $x + y - z = 1$	(d) $\frac{x}{a} + \frac{y}{a} + \frac{z}{a} = 1$						
1 48.	The equation of the pla axis is	ne which is parallel to <i>y</i> - axis an	nd cuts off intercepts of ler	1gth 2 and 3 from <i>x</i> -axis and <i>z</i> -						
	(a) $3x + 2z = 1$	(b) $3x + 2z = 6$	(c) $2x + 3z = 6$	(d) $3x + 2z = 0$						
49.	A planes π makes interest equation is	ercepts 3 and 4 respectively on	z-axis and x-axis. If π i	s parallel to <i>y</i> - axis, then its [EAMCET 2003]						
	(a) $3x + 4z = 12$	(b) $3z + 4x = 12$	(c) $3y + 4z = 12$	(d) $3z + 4y = 12$						
50.	The equation of the pla	ne through the three points (1,1,	1), (1, -1, 1), and (-7, -3,	-5), is [AISSE 1984]						
	(a) $3x - 4z + 1 = 0$	(b) $3x - 4y + 1 = 0$	(c) $3x + 4y + 1 = 0$	(d) None of these						
51.	The equation of the pla	ne through (1, 2, 3) and parallel	to the plane $2x + 3y - 4z = 0$) is [MP PET 1990]						
	(a) $2x + 3y + 4z = 4$	(b) $2x + 3y + 4z + 4 = 0$	(c) $2x - 3y + 4z + 4 = 0$	(d) $2x + 3y - 4z + 4 = 0$						
52.	The equation of the pla	ine through (2, 3, 4) and parallel	to the plane $x + 2v + 4z = 5$	İS[Kurukshetra CEE 1999: MP PI						
5	(a) $x + 2y + 4z = 10$	(h) $r + 2v + 4z = 3$	(c) $x + y + 2z = 2$	(d) $x + 2y + 4z = 24$						
	The equation of the matrix	$(0) x + 2y + \pi_{0} = 0$	(-) x + y + 2z = 2	$(u) x + 2y + \pi \xi = 2\pi$						
53.	3x + 3y + 2z = 8, is	and passing through the points (1, -3, -2 and perpendicular	x + 2y + 2z = 3 all $x + 2y + 2z = 3$						
	,, .			[AISSE 1987]						
	(a) $2x - 4y + 3z - 8 = 0$	(b) $2x - 4y - 3z + 8 = 0$	(c) $2x + 4y + 3z + 8 = 0$	(d) None of theses						
154.	The line drawn from (the equation of plane i	4, –1, 2) to the point (–3, 2, 3) m s	eets a plane at right angle	es at the point (–10, 5, 4), then						

CLICK HERE

Get More Learning Materials Here :

r www.studentbro.in

				[DSSE 1985]
	(a) $7x - 3y - z + 89 = 0$	(b) $7x + 3y + z + 89 = 0$	(c) $7x - 3y + z + 89 = 0$	(d) None of these
155.	x + y + z + 2 = 0 together	with $x + y + z + 3 = 0$ represents i	in space	[MP PET 1989]
	(a) A line	(b) A point	(c) A plane	(d) None of these
156.	The equation of the $2x + y - z + 5 = 0$ and which	plane which contains the lin ich is perpendicular to the plane	e of intersection of the $5x + 3y - 6z + 8 = 0$, is	planes $x + 2y + 3z - 4 = 0$ and [DSSE 1987]
	(a) $33x + 50y + 45z - 41 =$	0 (b) $33x + 45y + 50z + 41 = 0$	(c) $45x + 45y + 50z - 41 = 0$	(d) $33x + 45y + 50z - 41 = 0$
157.	The equation of the pla whose distance from th	nes passing through the line of i e origin is 1, are	intersection of the planes 33	x - y - 4z = 0 and $x + 3y + 6 = 0$,
	(a) $x - 2y - 2z - 3 = 0, 2x $	+y - 2z + 3 = 0	(b) $x - 2y + 2z - 3 = 0, 2x + y$	+2z+3=0
	(c) $x + 2y - 2z - 3 = 0, 2x + 2y + 2y - 2z - 3 = 0, 2x + 2y +$	-y - 2z + 3 = 0	(d) None of these	
158.	The equation of the pla	ne which passes through the poi	int (2, 1, 4) and parallel to tl	he plane $2x + 3y + 5z + 6 = 0$ is
	(a) $2x + 3y + 5z + 27 = 0$	(b) $2x + 3y + 5z - 27 = 0$	(c) $2x + y + 4z - 27 = 0$	(d) $2x + y + 4z + 27 = 0$
159.	The equation of a plan and (2, -1, 5) is given b	e which passes through (2, -3, y	1) and is normal to the line	e joining the points (3, 4, –1)
	(a) $x + 5y - 6z + 19 = 0$	(b) $x - 5y + 6z - 19 = 0$	(c) $x + 5y + 6z + 19 = 0$	(d) $x - 5y - 6z - 19 = 0$
160.	The coordinates of the plane <i>yz</i> are given by	point in which the line joining	the points (3, 5, -7) and (-	-2, 1, 8) is intersected by the
				[MP PET 1993]
	(a) $\left(0, \frac{13}{5}, 2\right)$	(b) $\left(0, -\frac{13}{5}, -2\right)$	(c) $\left(0, -\frac{13}{5}, \frac{2}{5}\right)$	(d) $\left(0, \frac{13}{5}, \frac{2}{5}\right)$
161.	If P be the point (2, 6, 2)	3), then the equation of the plan	e through <i>P</i> at right angle to	o OP, O being the origin, is [MP PET
	(a) $2x + 6y + 3z = 7$	(b) $2x - 6y + 3z = 7$	(c) $2x + 6y - 3z = 49$	(d) $2x + 6y + 3z = 49$
162.	The equation of the perpendicular to the pla	plane containing the line of it ane $4x + 5y - 3z - 8 = 0$ is	ntersection of the planes	2x - y = 0 and $y - 3z = 0$ the
	(a) $28x - 17y + 9z = 0$	(b) $28x + 17y + 9z = 0$	(c) $28x - 17y - 9z = 0$	(d) $7x - 3y + z = 0$
163.	The equation of the pla	ne passing through (1, 1, 1) and	(1, –1, –1) and perpendicular	r to $2x - y + z + 5 = 0$ is[EAMCET 2003]
	(a) $2x + 5y + z - 8 = 0$	(b) $x + y - z - 1 = 0$	(c) $2x + 5y + z + 4 = 0$	(d) $x - y + z - 1 = 0$
164.	The equation of the pla <i>x</i> -axis is	ne through the intersection of the section of the s	he planes $x + y + z = 1$ and $2x$	z + 3y - z + 4 = 0 and parallel to
				[Orissa JEE 2003]
	(a) $y - 3z + 6 = 0$	(b) $3y - z + 6 = 0$	(c) $y + 3z + 6 = 0$	(d) $3y - 2z + 6 = 0$
165.	If <i>O</i> is the origin and <i>A</i> is	is the point (<i>a</i> , <i>b</i> , <i>c</i>), then the e	equation of the plane throug	h A and at right angles to OA
	(a) $a(x-a)-b(y-b)-c(z)$	(-c) = 0	(b) $a(x+a)+b(y+b)+c(z+a)$	(z) = 0
	(c) $a(x-a)+b(y-b)+c(z)$	(-c) = 0	(d) None of these	
166.	The equation of the pla	ne through the point (1, 2, 3) and	d parallel to the plane $x + 2y$	y + 5z = 0 is [DCE 2002]
	(a) $(x-1)+2(y-2)+5(z-1)$	3) = 0	(b) $x + 2y + 5z = 14$	
	(c) $x + 2y + 5z = 6$		(d) None of these	

r www.studentbro.in

167.	The equation of the pla	ne passing through the intersed	ction of the planes $x + y + z =$	= 6 and $2x + 3y$	+4z + 5 = 0 and			
	the point (1, 1, 1), is							
	(a) $20x + 23y + 26z - 69 =$	0	(b) $20x + 23y + 26z + 69 = 0$					
	(c) $23x + 20y + 26z + 69 =$	0	(d) None of these					
168.	The equation of the play and the origin is	ne passing through the intersec	tion of the planes $x + 2y + 3z$	x + 4 = 0 and $4x$	+3y+2z+1=0			
	C C			[Keral	a (Engg.) 2002]			
	(a) $3x + 2y + z + 1 = 0$	(b) $3x + 2y + z = 0$	(c) $2x + 3y + z = 0$	(d) $x + y + z =$	0			
169.	If the plane $x - 2y + 3z = 2x + 3y - 4z - 5 = 0$, then	= 0 is rotated through a righ the equation of plane in its new	t angle about its line of position is	intersection w	rith the plane			
	(a) $28x - 17y + 9z = 0$	(b) $22x + 5y - 4z - 35 = 0$	(c) $25x + 17y - 52z - 25 = 0$	(d) $x + 35y - 1$	0z - 70 = 0			
170.	The equation of the plan 1) and (1, –1, 2) is	ne passing through the point (-	2, -2, 2) and containing the	e line joining tl	ne points (1, 1,			
	(a) $x + 2y - 3z + 4 = 0$	(b) $3x - 4y + 1 = 0$	(c) $5x + 2y - 3z - 17 = 0$	(d) $x - 3y - 6z$	+8 = 0			
171.	The equation of the plan	the containing the line $2x + z - 4 =$	= 0, 2y + z = 0 and passing three	ough the point	(2, 1, −1) is [AMU 19 9			
	(a) $x + y + z + 2 = 0$	(b) $x + y - z - 4 = 0$	(c) $x - y - z - 2 = 0$	(d) $x + y + z - $	2 = 0			
172.	In three dimensional sp	ace, the equation $3y + 4z = 0$ repr	resents	[Kurukshetra CEE 1994]				
	(a) A plane containing >	c-axis	(b)	A plane containing y-axis				
	(c) A plane containing z numbers 0, 3, 4	z-axis	(d)	A line w	th direction			
173.	Direction ratios of the planes $x + 2y + z = 3$	normal to the plane passing thr and $2x - y - z = 5$ are	rough the point (2, 1, 3) and	d the point of i	ntersection of			
	(a) 13, 6, 1	(b) 5, 7, 3	(c) 4, 3, 2	(d) None of t	hese			
174.	The plane of intersectio	n of $x^2 + y^2 + z^2 + 2x + 2y + 2z + 2 =$	= 0 and $4x^2 + 4y^2 + 4z^2 + 4x + 4$	4y + 4z - 1 = 0 is	[Pb. CET 1996]			
	(a) $4x + 4y + 4z + 9 = 0$	(b) $x + y + z + 9 = 0$	(c) $4x + 4y + 4z + 1 = 0$	(d) They do r	not intersect			
175.	If the planes $x + 2y + kz =$	= 0 and $2x + y - 2z = 0$ are at right	t angles, then the value of <i>k</i>	is	[MP PET 1999]			
	(a) $-\frac{1}{2}$	(b) $\frac{1}{2}$	(c) -2	(d) 2				
176.	The value of k for which	the planes $3x - 6y - 2z = 7$ and $2z = 7$	2x + y - kz = 5 are perpendicu	ılar to each oth	er, is [MP PET 1992]			
	(a) 0	(b) 1	(c) 2	(d) 3				
177.	If the given planes $ax + b$	by + cz + d = 0 and $a'x + b'y + c'z + a'$	l'=0 be mutually perpendic	ular, then	[MP PET 1994]			
	(a) $\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$	(b) $\frac{a}{a'} + \frac{b}{b'} + \frac{c}{c'} = 0$	(c) $aa'+bb'+cc'+dd'=0$	(d) <i>aa</i> '+ <i>bb</i> '+ <i>cc</i>	'=0			
178.	The angle between two	planes is equal to						
	(a) The angle between t	the tangents to them from any p	oint					
	(b) The angle between t	the normals to them from any po	oint					
	(c) The angle between t	the lines parallel to the planes fi	rom any point					
	(d) None of these							
179.	If the planes $3x - 2y + 2z$	+17 = 0 and $4x + 3y - kz = 25$ are 1	mutually perpendicular, the	k = k	<i>k</i> = [MP PET 1995]			
	(a) 3	(b) -3	(c) 9	(d) -6				

CLICK HERE

Regional www.studentbro.in

180.	The angle between the p	planes $2x - y + z = 6$ and $x + y + 2z$	= 7 is [MP PET 1991,98,20	000,01,03; Rajasthan PET 2001]
	(a) 30°	(b) 45°	(c) 0°	(d) 60°
181.	The angle between the p	planes $3x - 4y + 5z = 0$ and $2x - y$	-2z = 5 is [MP PET	1988; Kurukshetra CEE 2000]
	(a) $\frac{\pi}{3}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{6}$	(d) None of these
182.	If θ is the angle betwee	en the planes $2x - y + 2z = 3$, $6x - 2z = 3$	$2y + 3z = 5$, then $\cos \theta$ is equ	ial to [Kerala (Engg.) 2001]
	(a) $\frac{21}{20}$	(b) $\frac{11}{20}$	(c) $\frac{20}{21}$	(d) $\frac{12}{25}$
183.	The value of $aa'+bb'+cc'$ and $a'x+b'y+c'z+d'=0$,	being negative, the origin will l if	ie in the acute angle betwee	en the planes $ax + by + cz + d = 0$ [MP PET 2003]
	(a) $a = a' = 0$	(b) <i>d</i> and <i>d</i> ' are of same sign	(c) <i>d</i> and <i>d</i> ' are of opposit	te sign (d)
184.	The equation of the pla which contains the orig	ne which bisects the angle betv in is	ween the planes $3x - 6y + 2z$	+5 = 0 and $4x - 12y + 3z - 3 = 0$
	(a) $33x - 13y + 32z + 45 =$	0 (b) $x - 3y + z - 5 = 0$	(c) $33x + 13y + 32z + 45 = 0$	(d) None of these
185.	The equation of the bise	ector of the obtuse angle betwee	n the planes $3x + 4y - 5z + 1 =$	= 0, $5x + 12y - 13z = 0$ is
	(a) $11x + 4y - 3z = 0$	(b) $14x - 8y + 13 = 0$	(c) $x + y + z = 9$	(d) $13x - 7z + 18 = 0$
186.	The two points (1, 1, 1)	and (-3, 0, 1) with respect to th	e plane $3x + 4y - 12z + 13 = 0$ l	ie on
	(a) Opposite side	(b) Same side	(c) On the plane	(d) None of these
187.	Distance between paral	lel planes $2x - 2y + z + 3 = 0$ and 4	4x - 4y + 2z + 5 = 0 is	[MP PET 1994, 95]
	(a) $\frac{2}{3}$	(b) $\frac{1}{3}$	(c) $\frac{1}{6}$	(d) 2
188.	The distance between the	the planes $x + 2y + 3z + 7 = 0$ and 2	2x + 4y + 6z + 7 = 0 is	[MP PET 1991]
	(a) $\frac{\sqrt{7}}{2\sqrt{2}}$	(b) $\frac{7}{2}$	(c) $\frac{\sqrt{7}}{2}$	(d) $\frac{7}{2\sqrt{2}}$
189.	Distance of the point (2	, 3, 4) from the plane $3x - 6y + 2x$	z + 11 = 0 is	[MP PET 1990,96]
	(a) 1	(b) 2	(c) 3	(d) o
190.	The distance of the plan	6x - 3y + 2z - 14 = 0 from the or	rigin is	[MP PET 2003]
	(a) 2	(b) 1	(c) 14	(d) 8
191.	The distance of the poin	tt (2, 3, -5) from the plane $x + 2$	2y - 2z = 9 is	[MP PET 2001]
	(a) 4	(b) 3	(c) 2	(d) 1
192.	If the points $(1, 1, k)$ and	d (-3, 0, 1) be equidistant from t	the plane $3x + 4y - 12z + 13 = 0$), then $k =$
	(a) 0	(b) 1	(c) 2	(d) None of these
193.	If the product of distance	ces of the point (1, 1, 1) from the	e origin and the plane $x - y + y = x - y$	z + k = 0 be 5, then $k =$
	(a) -2	(b) -3	(c) 4	(d) 7
194.	If two planes intersect,	then the shortest distance betw	een the planes is	[Kurukshetra CEE 1998]
	(a) $\cos 0^{\circ}$	(b) cos 90°	(c) sin 90°	(d) 1
195.	The length of the perper	ndicular from the origin to the p	blane $3x + 4y + 12z = 52$ is	[MP PET 2000]
	(a) 3	(b) -4	(c) 5	(d) None of these

CLICK HERE

(»

Get More Learning Materials Here : 💻

Regional www.studentbro.in

(d) (a, 0, 0)

- **196.** If the length of perpendicular drawn from origin on a plane is 7 units and its direction ratios are -3, 2, 6, then that plane is
 - [MP PET 1998]
 - (b) -3x + 2y + 6z 49 = 0(c) 3x - 2y + 6z + 7 = 0(a) -3x + 2y + 6z - 7 = 0(d) -3x + 2y - 6z - 49 = 0
- **197.** If a plane cuts off intercepts -6, 3, 4 from the coordinate axes, then the length of the perpendicular from origin to the plane is
 - (b) $\frac{13}{\sqrt{61}}$ (a) $\frac{1}{\sqrt{61}}$ (c) $\frac{12}{\sqrt{29}}$ (d) $\frac{5}{\sqrt{41}}$
- **198.** If A(-1, 2, 3), B(1, 1, 1) and C(2, -1, 3) are points on a plane. A unit normal vector to the plane ABC is [BIT Ranchi 1988]

(a)
$$\pm \left(\frac{2\mathbf{i}+2\mathbf{j}+\mathbf{k}}{3}\right)$$
 (b) $\pm \left(\frac{2\mathbf{i}-2\mathbf{j}+\mathbf{k}}{3}\right)$ (c) $\pm \left(\frac{2\mathbf{i}-2\mathbf{j}-\mathbf{k}}{3}\right)$ (d) $-\left(\frac{2\mathbf{i}+2\mathbf{j}+\mathbf{k}}{3}\right)$

199. If the position vectors of three points A, B and C are respectively $\mathbf{i} + \mathbf{j} + \mathbf{k}, 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}$ and $7\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}$, then the unit vector to the plane containing the triangle ABC is [DCE 1999]

(a)
$$31i - 18j - 9k$$
 (b) $\frac{31i - 38j - 9k}{\sqrt{2486}}$ (c) $\frac{31i + 18j + 9k}{\sqrt{2486}}$ (d) None of these

200. The projection of point (*a*, *b*, *c*) in *yz* plane are

(b) (a, 0, c)

(a) (0, *b*, *c*)

Advance Level

(c) (a, b, 0)

201. A variable plane at a constant distance *p* from origin meets the coordinate axes in *A*, *B*, *C*. Through these points planes are drawn parallel to coordinate planes. Then locus of the point of intersection is

(a)
$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2}$$
 (b) $x^2 + y^2 + z^2 = p^2$ (c) $x + y + z = p$ (d) $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = p$

202. A variable plane is at a constant distance p from the origin and meets the axes in A, B and C, then the locus of the centroid of the triangle ABC is

(a)
$$x^{-2} + y^{-2} + z^{-2} = p^{-2}$$
 (b) $x^{-2} + y^{-2} + z^{-2} = 9p^{-2}$ (c) $x^{-2} + y^{-2} + z^{-2} = p^{2}$ (d) None of these
203. The equation of the plane which bisects line joining (2, 3, 4) and (6, 7, 8) is [CET 1991, 93]
(a) $x + y + z - 15 = 0$ (b) $x - y + z - 15 = 0$ (c) $x - y - z - 15 = 0$ (d) $x + y + z + 15 = 0$

204. The equation of the plane which bisects the line joining the points (-1, 2, 3) and (3, -5, 6) at right angle, is (a) 4x - 7y - 3z = 8 (b) 4x - 7y - 3z = 28(c) 4x - 7y + 3z = 28(d) 4x + 2y - 3z = 28

205. *P* is a fixed point (*a*, *a*, *a*) on a line through the origin equally inclined to the axes, then any plane through *P* perpendicular to OP, makes intercepts on the axes, the sum of whose reciprocals is equal to

(a) a (b)
$$\frac{3}{2a}$$
 (c) $\frac{3a}{2}$ (d) None of these

206. If from a point P (a, b, c) perpendiculars PA and PB are drawn to yz and zx planes, then the equation of the plane OAB is

(a) bcx + cay + abz = 0 (b) bcx + cay - abz = 0(c) bcx - cay + abz = 0

207. If l_1, m_1, n_1 and l_2, m_2, n_2 are the direction ratios of two intersecting lines, then the direction ratios of lines through them and coplanar with them are given by (b) $kl_1l_2, km_1m_2, kn_1n_2$

(a) $l_1 + km_1, l_2 + km_2, l_3 + km_3$

(c)
$$l_1 + kl_2, m_1 + km_2, n_1 + kn_2$$

(d) $\frac{kl_1}{l_2}, \frac{km_1}{m_2}, \frac{kn_1}{n_2}$, *k* being a number whatsoever

208. The four points (0, 4, 3), (-1, -5, -3), (-2, -2, 1) and (1, 1, -1) lie in the plane (a) 4x + 3y + 2z - 9 = 0 (b) 9x - 5y + 6z + 2 = 0(c) 3x + 4y + 7z - 5 = 0(d) None of these

Get More Learning Materials Here :

CLICK HERE

(d) -bcx + cay + abz = 0

209. A plane meets the coordinate axes at *A*, *B*, *C* such that the centre of the triangle is (3, 3, 3). The equation of the plane is

(a)
$$x + y + z = 3$$
 (b) $x + y + z = 9$ (c) $3x + 3y + 3z = 1$ (d) $9x + 9y + 9z = 1$

[AIEEE 2003]

🕀 www.studentbro.in

- **210.** Two system of rectangular axes have the same origin. If a plane cuts them at distance *a*, *b*,*c* and *a'*, *b'*, *c'* from the origin, then
 - (a) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0$ (b) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} - \frac{1}{c'^2} = 0$ (c) $\frac{1}{a^2} - \frac{1}{b^2} - \frac{1}{c^2} + \frac{1}{a'^2} - \frac{1}{b'^2} - \frac{1}{c'^2} = 0$ (d) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{a'^2} - \frac{1}{b'^2} - \frac{1}{c'^2} = 0$
- **211.** Which one of the following is the best condition for the plane ax + by + cz + d = 0 to intersect the *x* and *y* axes at equal angle

(a)
$$|a| = |b|$$
 (b) $a = -b$ (c) $a = b$ (d) $a^2 + b^2 = 1$

- **212.** If the equation $2x^2 2y^2 + 4z^2 + 6xz + 2yz + 3xy = 0$ represents a pair of planes, then the angle between the pair of planes is
 - (a) $\cos^{-1}(4/9)$ (b) $\cos^{-1}(4/21)$ (c) $\cos^{-1}(4/17)$ (d) $\cos^{-1}(2/3)$
- **213.** The points A(-1, 3, 0), B(2, 2, 1) and C(1, 1, 3) determine a plane. The distance from the plane to the point D(5, 7, 8) is
- [AMU 2001] (a) $\sqrt{66}$ (b) $\sqrt{71}$ (c) $\sqrt{73}$ (d) $\sqrt{76}$ 214. The length and foot of the perpendicular from the point (7, 14, 5) to the plane 2x + 4y - z = 2, are [AISSE 1987] (a) $\sqrt{21}$, (1, 2, 8) (b) $3\sqrt{21}$, (3, 2, 8) (c) $21\sqrt{3}$, (1, 2, 8) (d) $3\sqrt{21}$, (1, 2, 8)
- 215. The distance of the point (1, 1, 1) from the plane passing through the points (2, 1, 1), (1, 2, 1) and (1, 1, 2) is [AISSE 198 (a) $\frac{1}{\sqrt{3}}$ (b) 1 (c) $\sqrt{3}$ (d) None of these

216. Perpendicular is drawn from the point (0, 3, 4) to the plane 2x - 2y + z = 10. The coordinates of the foot of the perpendicular are

a)
$$(-8/3, 1/3, 16/3)$$
 (b) $(8/3, 1/3, 16/3)$ (c) $(8/3, -1/3, 16/3)$ (d) $(8/3, 1/3, -16/3)$

217. The equation of the plane containing the lines $\mathbf{r} - \mathbf{a} = t \mathbf{b}$ and $\mathbf{r} - \mathbf{b} = s \mathbf{a}$ is

- (a) $\mathbf{r} \cdot \mathbf{a} = \mathbf{a} \cdot \mathbf{b}$ (b) $[\mathbf{r} \cdot \mathbf{a} = \mathbf{b}] = 0$ (c) $\mathbf{r} \cdot \mathbf{a} = \mathbf{r} \cdot \mathbf{b}$ (d) $\mathbf{r} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{b}$
- **218.** Let the points *P*, *Q* and *R* have position vectors $\mathbf{r}_1 = 3\mathbf{i} 2\mathbf{j} \mathbf{k}$; $\mathbf{r}_2 = \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}$ and $\mathbf{r}_3 = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$ relative to an origin *O*. The distance of *P* from the plane *OQR* is **[Roorkee 1990]**
- (a) 2 (b) 3 (c) 1 (d) 5 219. The projection of the point (1, 3, 4) on the plane $\mathbf{r} . (2\mathbf{i} - \mathbf{j} + \mathbf{k}) + 3 = 0$ is

220. If $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + \mathbf{k}) + \frac{3}{2} = 0$ is the equation of plane and $\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$ is a point, then a point equidistant from the plane on the opposite side is **[AMU 1998]**

(a) i+2j+3k (b) 3i+j+k (c) 3i+2j+3k (d) 3(i+j+k)

221. If (p_1, q_1, r_1) be the image of (p, q, r) in the plane ax + by + cz + d = 0, then

(a) $\frac{p_1 - p}{a} = \frac{q_1 - q}{b} = \frac{r_1 - r}{c}$ (b) $a(p + p_1) + b(q + q_1) + c(r + r_1) + 2d = 0$ (c) Both (a) and (b) (d) None of these

CLICK HERE

🕀 www.studentbro.in

232.	The equation of the plan	he passing through the line $\frac{x-4}{1}$	$\frac{4}{1} = \frac{y-3}{1} = \frac{z-2}{2}$ and $\frac{x-3}{1} = \frac{y}{2}$	$\frac{-2}{-4} = \frac{z}{5}$ is									
	(a) $11x - y - 3z = 35$	(b) $11x + y - 3z = 35$	(c) $11x - y + 3z = 35$	(d) None of these									
233.	The equation of the plan	he in which the lines $\frac{x-5}{4} = \frac{y-7}{4}$	$\frac{7}{-3} = \frac{z+3}{-5}$ and $\frac{x-8}{7} = \frac{y-4}{1} = \frac{z}{-5}$	$\frac{z-5}{3}$ lie, is [MP PET 2000]									
	(a) $17x - 47y - 24z + 172 =$	= 0	(b) $17x + 47y - 24z + 172 = 0$										
	(c) $17x + 47y + 24z + 172 =$	= 0	(d) $17x - 47y + 24z + 172 = 0$										
234.	The equation of the line	passing through (1, 2, 3) and pa	arallel to the planes $x - y + 2$	z = 5 and $3x + y + z = 6$, is[DSSE 19									
	(a) $\frac{x-1}{-3} = \frac{y-2}{5} = \frac{z-3}{4}$	(b) $\frac{x-1}{-3} = \frac{y-2}{-5} = \frac{z-1}{4}$	(c) $\frac{x-1}{-3} = \frac{y-2}{-5} = \frac{z-1}{-4}$	(d) None of these									
235.	The plane $x - 2y + z - 6 =$	0 and the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ are rel	lated as	[Kurukshetra CEE 2001]									
	(a) Parallel to the plane	e (b) Normal to the plane	(c) Lies in the plane	(d) None of these									
236.	The condition that the l	ine $\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$ lies in	the plane $ax + by + cz + d = 0$	is									
	(a) $ax_1 + by_1 + cz_1 + d = 0$	and $al + bm + cn \neq 0$	(b) $al+bm+cn=0$ and ax_1	$+by_1 + cz_1 + d \neq 0$									
	(c) $ax_1 + by_1 + cz_1 + d = 0$	and $al+bm+cn=0$	(d) $ax_1 + by_1 + cz_1 = 0$ and a	d + bm + cn = 0									
237.	$\mathbf{r} = \mathbf{i} + \mathbf{j} + \lambda(2\mathbf{i} + \mathbf{j} + 4\mathbf{k})$ and following is true	1 $\mathbf{r} \cdot (\mathbf{i} + 2\mathbf{j} - \mathbf{k}) = 3$ are the equat	ion of line and plane resp	pectively, then which of the									
	(a) The line is perpendicular to plane (b) The line lies in the plane												
	(c) The line is parallel to plane but does not lie in plane (d) The line cuts the plane obliquely												
238.	The line joining the poin	nts (3, 5, –7) and (–2, 1, 8) meet	s the yz-plane at point [Raja	asthan PET 2003; MP PET 1993]									
	(a) $\left(0,\frac{13}{5},2\right)$	(b) $\left(2, 0, \frac{13}{5}\right)$	(c) $\left(0, 2, \frac{13}{5}\right)$	(d) (2, 2, 0)									
239.	Two lines which do not	lie in the same plane are called											
	(a) Parallel	(b) Coincident	(c) Intersecting	(d) Skew									
40.	The planes $x = cy + bz$, $y =$	= az + cx, z = bx + ay pass through	one line, if										
	(a) $a+b+c=0$	(b) $a+b+c=1$	(c) $a^2 + b^2 + c^2 = 1$	(d) $a^2 + b^2 + c^2 + 2abc = 1$									
241.	The line $\frac{x-3}{2} = \frac{y-4}{3} = \frac{z}{3}$	$\frac{-5}{4}$ lies in the plane $4x + 4y - kz$	-d = 0. The values of k and	<i>d</i> are									
	(a) 4, 8	(b) -5, -3	(c) 5, 3	(d) -4, -8									
242.	If $4x + 4y - kz = 0$ is the e	equation of the plane through th	ne origin that contains the li	ne $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}$, then $k = [MP]$									
	(a) 1	(b) 3	(c) 5	(d) 7									
243.	If $\frac{x-1}{l} = \frac{y-2}{m} = \frac{z+1}{n}$ is t	he equation of the line through	(1, 2, -1) and (-1, 0, 1); the	n (<i>l, m, n</i>) is [MP PET 1992]									
	(a) (-1, 0, 1)	(b) (1, 1, -1)	(c) (1, 2, -1)	(d) (0, 1, 0)									
244.	Given the line $L: \frac{x-1}{3} =$	$=\frac{y+1}{2}=\frac{z-3}{-1}$ and plane $P: x-2$	y-z=0. Then of the follow	ving assertions, the only one									
	(a) L is parallel to plane	e P (b)	L is perpendicular to plan	e P (c) L lies in the plane P									

CLICK HERE

(»

Regional www.studentbro.in

245.	The coordinates of the point where the line joining the points (2, -3, 1), (3, -4, -5) cuts the plane $2x + y + z = 7$ are											
	are											
	(a) (2, 1, 0)	(b) (3, 2, 5)	(c) (1, -2, 7)	(d) None of these								
246.	The point where the line	$\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+3}{4}$ meets the pl	ane $2x + 4y - z = 1$ is	[DSSE 1981]								
	(a) (3, -1, 1)	(b) (3, 1, 1)	(c) (1, 1, 3)	(d) (1, 3, 1)								
247.	The coordinates of the po	bint where the line $\frac{x-6}{-1} = \frac{y+1}{0}$	$=\frac{z+3}{4}$ meets the plane $x+y$	v - z = 3 are [MP PET 1998]								
	(a) (2, 1, 0)	(b) (7, -1, -7)	(c) (1, 2, -6)	(d) (5, -1, 1)								
248.	The point of intersection	h of the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z+2}{3}$ and	the plane $2x + 3y + z = 0$ is	[MP PET 1989]								
	(a) (0, 1, -2)	(b) (1, 2, 3)	(c) (-1, 9, -25)	(d) $\left(\frac{-1}{11}, \frac{9}{11}, \frac{-25}{11}\right)$								
249.	9. If $p_1 = 0$ and $p_2 = 0$ be two non-parallel planes, then the equation $p_1 + \lambda p_2 = 0, \lambda \in R$ represents the family of all											
	planes through the line of intersection of the planes $p_1 = 0$ and $p_2 = 0$, except the plane											
	(a) $p_1 = 0$	(b) $p_2 = 0$	(c) $p_1 + p_2 = 0$	(d) $p_1 - p_2 = 0$								
250.	The direction ratios of the	he normal to the plane passing	through the points (1, -2, 3	3), (–1, 2, –1) and parallel to								
	$\frac{x-2}{2} = \frac{y+1}{3} = \frac{z}{4}$ is											
				[Tamilnadu (Engg.) 2002]								
	(a) (2, 3, 4)	(b) (4, 0, 7)	(c) (-2, 0, -1)	(d) (2, 0, -1)								
251.	The distance between the	e line $\frac{x-1}{3} = \frac{y+2}{-2} = \frac{z-1}{2}$ and the	e plane $2x + 2y - z = 6$ is									
	(a) 9 units	(b) 1 unit	(c) 2 units	(d) 3 units								
252.	The distance of the point	t of intersection of the line $\frac{x-3}{1}$	$\frac{y-4}{2} = \frac{y-4}{2} = \frac{z-5}{2}$ and the plane	e $x + y + z = 17$ from the point								
	(3, 4, 5) is given by											
	(a) 3	(b) $\frac{3}{2}$	(c) $\sqrt{3}$	(d) None of these								

253.	The distance of the point ()	1, -2 3) from the plane $x - y + z$	= 5 measured parallel to the line $\frac{x}{2}$ =	$=\frac{y}{3}=\frac{z}{-6}$, is	[AI CBSE 1984]
	(a) 1	(b) $\frac{6}{7}$	(c) $\frac{7}{6}$	(d)	None of these
254.	If line $\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z}{m}$	$\frac{z-z_1}{n}$ is parallel to the plane ax	x + by + cz + d = 0, then		[MNR 1995; MP PET 1995]
	(a) $\frac{a}{l} = \frac{b}{m} = \frac{c}{n}$	(b) $al+bm+cn=0$	(c) $\frac{a}{l} + \frac{b}{m} + \frac{c}{n} = 0$	(d)	None of these
255.	The angle between the line	$\frac{x-2}{a} = \frac{y-2}{b} = \frac{z-2}{c}$ and the	plane $ax + by + cz + 6 = 0$ is		
	(a) $\sin^{-1}\left(\frac{1}{\sqrt{a^2+b^2+c^2}}\right)$) (b) 45°	(c) 60°	(d)	90°
256.	The angle between the line	$\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and the plane $3x$	+2y - 3z = 4 is		[MP PET 2003]
	(a) 45°	(b) 0°	(c) $\cos^{-1}\left(\frac{24}{\sqrt{29}\sqrt{22}}\right)$	(d)	90°
257.	The angle between the line	$\frac{x-1}{2} = \frac{y-2}{1} = \frac{z+3}{-2}$ and the	plane $x + y + 4 = 0$, is		[MP PET 1999]
	(a) 0°	(b) 30°	(c) 45°	(d)	90°
258.	The angle between the line	$\frac{x+1}{3} = \frac{y-1}{2} = \frac{z-2}{4}$ and the	plane $2x + y - 3z + 4 = 0$, is		[AI CBSE 1981; Pb. CET 1997]
	(a) $\sin^{-1}\left(\frac{4}{\sqrt{406}}\right)$	(b) $\sin^{-1}\left(\frac{-4}{\sqrt{406}}\right)$	(c) $\sin^{-1}\left(\frac{4}{14\sqrt{29}}\right)$	(d)	None of these
		C	Advance Level		

- **259.** A straight line passes through the point (2, -1, -1). It is parallel to the plane 4x + y + z + 2 = 0 and is perpendicular to the line x/1 = y/(-2) = (z-5)/1. The equation of the straight line are
 - (a) (x-2)/4 = (y+1)/1 = (z+1)/1(b) (x+2)/4 = (y-1)/1 = (z-1)/3
 - (c) (x-2)/(-1) = (y+1)/1 = (z+1)/3(d) (x+2)/(-1) = (y-1)/1 = (z-1)/3

260. The equations of the projection of the line $\frac{x-1}{2} = \frac{y-2}{1} = \frac{z-3}{3}$ on the plane x + y + z - 1 = 0 are (a) x + y + z - 1 = 0 = 2x - y - z + 3(b) x + y - z - 1 = 0 = x + 2y - z - 3

(c) 2x - y + 3z - 1 = 0 = x + y + z + 1 (d) x + 2y - 3z = 0 = x + y + z + 1

261. If a plane passes through the point (1, 1, 1) and is perpendicular to the line $\frac{x-1}{3} = \frac{y-1}{0} = \frac{z-1}{4}$, then its perpendicular distance from the origin is [MP PET 1998]

CLICK HERE

>>

🕀 www.studentbro.in

(a) $\frac{3}{4}$ (b) $\frac{4}{3}$ (c) $\frac{7}{5}$ (d) 1

26. The ratio in which the sphere
$$x^{3} + y^{2} + z^{2} = 504$$
 divides the line segment *AB* joining the points *A* (27, -9, 18) is given by
(a) 2:3 enternally (b) 2:3 internally (c) 1:2 enternally (d) None of these
26. The ratio in which the sphere $x^{3} + y^{2} + z^{2} = 20$ is divides the line reading some is $x + 4y + 5z = 5 = 0$ are
(a) $(0, 0, 0, (2, -4, 0) = 0)$ (b) $(0, 0, 0, 3, -4, -5)$ (c) $(0, 0, 0, (2, 6, -4) = (4, 2, -5, -5)$
26. The angle between the line $\mathbf{r} = (3 + 2\mathbf{j} - \mathbf{k}) + 3(3 - 1 + \mathbf{k})$ and the normal to the plane $\mathbf{r} (2 - \mathbf{j} + \mathbf{k}) + 4\mathbf{i}$ (b) $\mathbf{r} (2 + \frac{2}{3})$ (c) $\mathbf{un}^{4} \left(\frac{2\sqrt{2}}{3}\right)$ (d) $\mathbf{cut}^{4} \left(\frac{2\sqrt{2}}{3}\right)$
26. Angle between the line $\mathbf{r} = (2\mathbf{i} - \mathbf{j} + \mathbf{k}) + 3(1 + \mathbf{j} + \mathbf{k})$ and the plane $\mathbf{r} (3\mathbf{i} + 2\mathbf{j} - \mathbf{k}) - 4\mathbf{i}$ (MU 1993)
(u) $\mathbf{cut}^{4} \left(\frac{2\sqrt{2}}{42}\right)$ (b) $\mathbf{cus}^{4} \left(-\frac{2}{\sqrt{42}}\right)$ (c) $\sin^{4} \left(\frac{2}{\sqrt{42}}\right)$ (d) $\sin^{4} \left(-\frac{2}{\sqrt{42}}\right)$
26. The ratio in which the sphere $x^{3} + y^{3} + z^{2} = 504$ divides the line segment *AB* joining the points A (12, -4, 8) and (27, -9, 18) is given by
(a) 2:3 enternally (b) 2:3 internally (c) 1:2 enternally (d) None of these
26. The ratio in which the sphere $x^{3} + y^{3} + z^{2} = 504$ divides the line segment *AB* joining the points A (12, -4, 8) and (27, -9, 18) is given by
(a) 2:3 enternally (b) 2:3 internally (c) 1:2 enternally (d) None of these
26. The backs of the squature $y^{2} + z^{2} = 10$ in three dimensional space is
(a) *x*-axis (b) *z*-axis (c) *y*-axis (d) *y*-plane
26. Apoint moves so that the sum of the squares of its distances from two given points remains constant. The locus of the points $(1 - 2, 3)$ are the end points of a dimeter of sphere. Then the radius of the sphere is equal to (0) Apaire (10, None of these
27. The tops of observes of radius a' tooching all the coordinate planes is
(a) A merry set (b) 0. A plane (c) 3 (d) 9
27. The number of sphere so (addius ig the coordinate planes is
(a) $x^{2} + y^{2} + z^{2} + 2a(x + y + z) + 2a^{2} =$

CLICK HERE

(»

Get More Learning Materials Here : 💻

Regional www.studentbro.in

(a)
$$\left(\frac{a}{2}, 0.0\right)$$
 (b) $\left(0, \frac{b}{2}, 0\right)$ (c) $\left(0, 0, \frac{c}{2}\right)$ (d) $\left(\frac{a}{2}, \frac{b}{2}, \frac{c}{2}\right)$
275. The equation $ax^2 + ay^2 + ax^2 + 2ax + 2ay + 2az + d = 0, a \neq 0$, represents a sphere if
(a) $a^2 + y^2 + w^2 + ad < 0$ (b) $a^2 + y^2 + w^2 + ad < 0$ (c) $a^2 + y^2 + w^2 - ad < 0$ (d) $a^2 + y^2 + w^2 - ad > 0$
276. The radius of the sphere $x^2 + y^2 + z^2 - 4x + 8y - 10z + 1 = 0$ is
(a) 7 (b) 5 (c) 2 (d) 15
277. Centre of the sphere $x^2 + y^2 + z^2 - 4z + 2y - 2z + (z - z)z = 0$ is
(a) (x_2, y_2, z_2) (b) $\left(\frac{x_1 - x_2}{2}, \frac{y_1 - x_2}{2}, \frac{z_1 - z_2}{2}\right)$ (c) $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$ (d) (x_1, y_1, z_1)
278. The equation of the tangent plane at a point (x_1, y_1, z_1) on the sphere $x^2 + y^2 + z^2 + 2ax + 2xy + 2az + d = 0$ is
(a) (x_2, y_2, z_2) (b) $\left(\frac{x_1 - x_2}{2}, \frac{y_1 - x_2}{2}, \frac{z_1 - z_2}{2}\right)$ (c) $\left(x_1 + x_2, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$ (d) (x_1, y_1, z_1)
278. The equation of the tangent plane at a point (x_1, y_1, z_1) on the sphere $x^2 + y^2 + z^2 + 2ax + 2xy + 2az + d = 0$ is
(d) $x_1 + y_2 + z_1 + ax + y_2 + y_2 + d = 0$ (d) None of thes
279. If two spheres of ralii τ_1 and τ_2 cut orthogonally, then the radius of the common circle is
(a) τ_1^2 (b) $\sqrt{t_1^2 + z_2^2}$ (c) $x_1^2 + y^2 + z^2 - 4x - 6y - 8z - 5 = 0$ and which passes through $(0, 1, 0, 0, is$
(pto. CET 1944)
(a) $x^2 + y^2 + z^2 - 4x - 6y - 8z + 1 - 0$ (b) $x^2 + y^2 + z^2 - 4x - 6y - 8z + 5 - 0$
(c) $x^4 + x^3 + z^2 - 4x - 6y - 8z + 1 - 0$ (b) $x^2 + y^2 + z^2 - 4x - 6y - 8z + 5 - 0$
(c) $x^4 + x^3 + z^2 - 4x - 6y - 8z + 1 - 0$ (c) $\sqrt{3}$ (d) $\sqrt{3}/2$
283. The coordinates of the sphere (i + 1)(x + 3) + (y - 2)(y - 4) + (z + 1)(z - 3) = 0 are
(a) $(1 - 1, 1)$ (b) $(-1, 1, -1)$ (c) $(2, -3, 2)$ (d) $(-2, 3, -2)$
284. The coordinates of the centre of the sphere $x^3 + y^2 + z^2 - 2x - 6y - 8z - 5 = 0$ and which passes through the origin is
(pto. CET 1949)
(a) $x^3 + y^3 + z^2 + 2x - 2y + 2z + 1 = 0$ (b) $x^3 + y^3 + z^2 - 2x - 2y$

Get More Learning Materials Here : 💻

CLICK HERE

R www.studentbro.in

376	Three Dimensional Co-ord	linate Geometry		
	(a) Intersect in a plane	(b) Intersect in five points	(c) Do not intersect	(d) None of these
287.	If r be position vector of any	point on a sphere and a and b are res	pectively position vectors of the ex	tremities of a diameter, then
				[AMU 1999]
	(a) $\mathbf{r} \cdot (\mathbf{a} - \mathbf{b}) = 0$	(b) $\mathbf{r} \cdot (\mathbf{r} - \mathbf{a}) = 0$	(c) $(\mathbf{r} + \mathbf{a}) \cdot (\mathbf{r} + \mathbf{b}) = 0$	(d) $(\mathbf{r}-\mathbf{a})\cdot(\mathbf{r}-\mathbf{b})=0$
288.	The centre of the sphere α r	$-2\mathbf{u} \cdot \mathbf{r} = \beta, (\alpha \neq 0)$ is		[AMU 1999]
	(a) $-\mathbf{u} / \alpha$	(b) \mathbf{u} / α	(c) $\alpha \mathbf{u} / \beta$	(d) $\frac{\alpha+\beta}{\alpha}$ u
289.	The spheres $\mathbf{r}^2 + 2\mathbf{u}_1$. $\mathbf{r} + 2\mathbf{u}_1$	$\mathbf{d}_1 = 0$ and $\mathbf{r}^2 + 2\mathbf{u}_2$. $\mathbf{r} + 2\mathbf{d}_2 = 0$ c	ut orthogonally, if	[AMU 1999]
	(a) $\mathbf{u_1} \cdot \mathbf{u_2} = 0$		(b) $u_1 + u_2 = 0$	
	(c) $\mathbf{u}_1 \cdot \mathbf{u}_2 = \mathbf{d}_1 + \mathbf{d}_2$		(d) $(\mathbf{u}_1 - \mathbf{u}_2) \cdot (\mathbf{u}_1 + \mathbf{u}_2) =$	$=\mathbf{d_1^2}+\mathbf{d_2^2}$
		Adva	ance level	
290.	If a sphere of constant radius	k passes through the origin and meet	s the axis in <i>A</i> , <i>B</i> , <i>C</i> then the centro	oid of the triangle ABC lies on
	(a) $x^2 + y^2 + z^2 = k^2$	(b) $x^2 + y^2 + z^2 = 4k^2$	(c) $9(x^2 + y^2 + z^2) = 4k^2$	(d) $9(x^2 + y^2 + z^2) = k^2$
291.	The smallest radius of the sp	here passing through (1, 0, 0), (0, 1, 0) and (0, 0, 1) is	[Pb. CET 1997,99; Kurukshetra CEE 1996]
	(a) $\sqrt{\frac{3}{5}}$	(b) $\sqrt{\frac{3}{8}}$	(c) $\sqrt{\frac{2}{3}}$	(d) $\sqrt{\frac{5}{12}}$
292.	In order that bigger sphere (c	centre C_1 , radius R) may fully contain	a smaller sphere (center C_2 , radi	ius r), the correct relationship is
				[AMU 1991]
	(a) $C_1 C_2 < r + R$	(b) $C_1 C_2 < R - r$	(c) $C_1 C_2 < 2(R-r)$	(d) $C_1 C_2 < \frac{1}{2}(R+r)$
293.	A sphere $x^2 + y^2 + z^2 = 9$	is cut by the plane $x + y + z = 3$. The	radius of the circle so formed is	
	(a) $\sqrt{6}$	(b) $\sqrt{3}$	(c) 3	(d) 6
294.	The radius of the circle x^2 +	$-y^2 + z^2 - 2y - 4z = 11, \ x + 2y + 2z$	z = 15 is	[AMU 1990,92]
	(a) 4	(b) $\sqrt{7}$	(c) 5	(d) 7
295.	The line $\frac{x+1}{-1} = \frac{y-12}{5} = \frac{z}{5}$	$\frac{-7}{2}$ cuts the surface $11x^2 - 5y^2 + z$	$^2 = 0$ in the point	
	(a) (1, 1, 1) and (1, 2, 3)	(b) $(1, -1, 2)$ and $(1, 2, 4)$	(c) $(1, 2, 3)$ and $(2, -3, 1)$	(d) None of these
296.	The equation of the sphere ci	rcumscribing the tetrahedron whose f	faces are $x = 0, y = 0, z = 0$ and y	x / a + y / b + z / c = 1 is
	(a) $x^2 + y^2 + z^2 = a^2 + b^2$	$+c^2$		
	(b) $x^2 + y^2 + z^2 - ax - by$	-cz=0		
	(c) $x^2 + y^2 + z^2 - 2ax - 2k$	-2cz = 0		
	(d) None of these			
297.	A plane passes through a fixe	ed point (a, b, c). The locus of the foo	t of the perpendicular drawn to it f	rom the origin is

Get More Learning Materials Here : 💻

CLICK HERE

》

		Three Dimensio	onal Co-ordinate Geometry 377				
	(a) $x^2 + y^2 + z^2 + ax + by + cz = 0$	(b) $x^2 + y^2 + z^2 - ax - by - cz$	$\mathbf{g} = 0$				
	(c) $x^2 + y^2 + z^2 + 2ax + 2by + 2cz = 0$	(d) $x^2 + y^2 + z^2 + 2ax - 2by -$	-2cz=0				
298.	The equation of the sphere passing through the point $(1, 3, -2)$ and the	nd the circle $y^2 + z^2 = 25$ and $x = 0$ is					
	(a) $x^2 + y^2 + z^2 + 11x + 25 = 0$	(b) $x^2 + y^2 + z^2 - 11x + 25 =$	0				
	(c) $x^2 + y^2 + z^2 + 11x - 25 = 0$	(d) $x^2 + y^2 + z^2 - 11x - 25 =$	0				
299.	Radius of the circle $\mathbf{r}^2 + \mathbf{r} \cdot (2\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}) - 19 = 0$, $\mathbf{r} \cdot (\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) + 8$	8 = 0 is	[Kurukshetra CEE 1996, DCE 1997]				
	(a) 2 (b) 3	(c) 4	(d) 5				
300.	The shortest distance from the point $(1, 2, -1)$ to the surface of the sphere.	ere $x^2 + y^2 + z^2 = 24$ is	[Pb. CET 1996]				
	(a) $3\sqrt{6}$ (b) $2\sqrt{6}$	(c) $\sqrt{6}$	(d) 2				

Thre	ree Dimensional Co-ordinate Geometry											Assignment (Basic and Advance							
	c																		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
с	с	а	с	b	b	d	b	а	b	d	а	с	d	с	b	с	b	d	а
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	С	a	b	d	с	b	a	b	b	a	d	с	a	a	d	a	b	d	d
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
а	b	d	a	b	a	b	с	b	а	d	а	а	d	с	a	a	b	d	d
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
d	b	b	с	с	a	b	b	d	a	a	b	b	a	b	a	b	d	d	с
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
b	b	а	с	a	d	а	a	d	с	а	b	d	d	а	d	d	d	а	а
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	с	с	с	a	d	b	b	с	с	а	b	а	с	с	a	с	с	b	b
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
b	d	с	b	с	d	с	d	d	а	с	с	d	с	а	с	b	b	а	с
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
а	с	b	с	d	b	b	b	a	a	d	d	а	a	d	d	a	b	а	а
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
d	а	b	a	с	a	a	b	b	d	d	а	а	а	d	a	d	b	a	d
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
b	с	b	d	b	a	с	a	a	a	b	b	с	b	d	b	с	a	b	а
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
a	b	a	с	d	b	с	b	b	d	a	a	а	d	a	b	b	b	с	b
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
с	а	b	d	с	с	b	b	b	а	а	d	а	а	а	с	b	а	d	d
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
с	с	b	с	с	а	d	d	b	d	d	a	а	b	d	b	с	b	с	а
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
с	с	с	a	d	a	а	с	a	с	b	d	d	d	d	a	с	с	d	b
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300

Get More Learning Materials Here : 📕

Regional www.studentbro.in

	Circle and System of Circles 379										379								
d	d	b	a	a	с	d	d	с	с	с	b	a	b	с	b	b	с	с	с

